
Journal of Systems Architecture 150 (2024) 103107

A
1

Contents lists available at ScienceDirect

Journal of Systems Architecture

journal homepage: www.elsevier.com/locate/sysarc

SecurityCloak: Protection against cache timing and speculative memory
access attacks
Fernando Mosquera a,∗, Ashen Ekanayake b, William Hua a, Krishna Kavi a, Gayatri Mehta a,
Lizy John b

a University of North Texas, United States of America
b University of Texas at Austin, United States of America

A R T I C L E I N F O

Keywords:
Side-channel attacks
Speculative execution
Victim cache
Spectre
Prime & probe
Evict & time
Flush & reload
Guard cache

A B S T R A C T

Microarchitectural innovations such as deep cache hierarchies, out-of-order execution, branch prediction
and speculative execution in modern processors have made possible to meet ever-increasing demands for
performance. However, these innovations have inadvertently introduced vulnerabilities that are exploited by
cache-side channel attacks such as Flush & Reload, Prime & Probe, Evict & Time, and attacks such as Spectre
and Meltdown that exploit speculative executions. These attacks can potentially leak information which should
be secured.

Mitigating the attacks while preserving the performance of out-of-order execution has been a challenge.
Previous hardware mitigation techniques against cache timing or side-channel attacks include complex cache
indexing mechanisms, encrypting addresses, partitioning cache memories, assigning specific ways of a set for
each process, or obfuscating cache accesses by using ghost threads. Previous techniques for preventing or at
least mitigating attacks based on speculative executions include hiding speculative data accesses using separate
buffers or caches, or undoing the effects of speculation throughout program execution. Most techniques address
either attacks that exploit speculation such as Spectre or cache side-channel attacks but not both. In many cases,
changes to the microarchitecture with additional hardware are needed to implement the security protection.
In some cases the mitigations cause performance penalties. In contrast we present very simple designs aimed
at preventing both timing based cache side-channel attacks and Spectre style attacks based on speculative
executions. Our approach combines obfuscation of cache timing making it more difficult for side-channel
attacks to succeed and delaying speculative data accesses that miss in cache until the speculation is resolved.
We will show that these approaches prevent both timing attacks such as Flush & Reload, Prime & Probe,
Evict & Time as well as speculative attacks such as Spectre. Our technique requires very minimal changes to
hardware.
1. Introduction

Over the past few decades, computer systems have introduced many
major microarchitectural innovations including deep cache hierarchies,
out-of-order instruction execution, branch prediction and speculative
execution, and issuing multiple instructions per cycle, just to name a
few. These innovations were motivated by the need for higher per-
formance at lower energy consumption. However, these innovations
have inadvertently introduced vulnerabilities that can potentially leak
information that should be secured. The information may be leaked
either through a side-channel or direct (modification to application
code) attacks.

Among the earliest attacks discovered is a side-channel to infor-
mation stored in cache memories by observing memory access times,

∗ Corresponding author.
E-mail addresses: FernandoMosquera@my.unt.edu (F. Mosquera), ljohn@ece.utexas.edu (L. John).

which in turn reveal if an access (to an address) is a hit or a miss in
cache. An attacker can use this side-channel to deduce the memory
addresses accessed by a victim and extract additional information such
as keys used by encryption in AES [1,2]. Some common side-channel
attacks include Evict & Time [3], Prime & Probe [3,4] and Flush &
Reload [5].

Yet another modern hardware side-channel attack is made possible
by the use of out-of-order and speculative execution of instructions [6].
In such systems, processors rely on predictions as to which execution
path to proceed along, even before completing the branch instruction
that determines the correct path. In most cases, the predictions are
very accurate. When the prediction is wrong, the processor squashes (or
undoes) the computations along the mispredicted path. This is achieved
vailable online 9 March 2024
383-7621/© 2024 Elsevier B.V. All rights reserved.

https://doi.org/10.1016/j.sysarc.2024.103107
Received 5 July 2023; Received in revised form 21 February 2024; Accepted 6 Ma
rch 2024

https://www.elsevier.com/locate/sysarc
https://www.elsevier.com/locate/sysarc
mailto:FernandoMosquera@my.unt.edu
mailto:ljohn@ece.utexas.edu
https://doi.org/10.1016/j.sysarc.2024.103107
https://doi.org/10.1016/j.sysarc.2024.103107

Journal of Systems Architecture 150 (2024) 103107F. Mosquera et al.
by the use of reorder buffers (ROB). However, when a mispredicted
path contains memory accesses (particularly read access), and if the
accessed data is not available in cache memories (i.e., read miss),
the processing system will bring the data into cache memories. Even
when the misprediction is detected and all instructions along the mis-
predicted path are squashed, the data brought into the cache is not
invalidated. At a later time, the attacker can rely on a side-channel to
access this data in the cache, which may contain secret information.

Computer architects have been investigating techniques to either
prevent or at least mitigate (making it harder for an attacker to success-
fully launch attacks) these attacks. The solutions can be implemented
in software or hardware. For example, ASLR [7] randomizes kernel
address space to make it more difficult for the attacker to deduce secret
information based on addresses accessed by a victim. This requires no
hardware changes but works for Meltdown [8] but does not prevent
many Spectre variants [9]. Likewise, preventing ‘‘deduplication’’ [10]
eliminates some attacks since shared libraries will have multiple copies
but can lead to significant performance penalties.

Hardware techniques to mitigate timing based cache side-channel
attacks include partitioning caches so that only one process can access
its partition (and no other process can evict data contained in those
partitions), changing cache indexing mechanisms or encrypting how
an address is mapped to a cache index so that cache misses to an
entry cannot easily be translated into addresses, among others [2,4,11–
15]. Mitigation of speculative attacks can be categorized into three
broad groups: (i) prevent speculation altogether or at least prevent
speculative execution of certain instructions, (ii) make speculative exe-
cution ‘‘invisible’’ either by buffering all memory accesses performed
until speculation is resolved or delaying memory accesses (at least
accesses that cause cache misses) until speculation is resolved and (iii)
‘‘clean-up’’ all affects of speculative execution, including evicting any
speculatively fetched data from caches.

It should be noted that most published mitigation or prevention
techniques address either speculation based attacks or timing based
attacks but not both. In this work, we present very simple hardware
mitigation techniques that together can address both timing based
cache-side channel attacks and illegal or unauthorized memory ac-
cesses during speculative execution. We explore various techniques to
obfuscate micro-architectural information making it more difficult for
attackers.

The main contributions of our work (SecurityCloak) are:

• Delaying speculative load misses: Many of the attacks rely on
fetching data into the cache during speculation, including the data
along misspeculated paths or along unauthorized access paths. Ex-
isting techniques allow such accesses but either hide the fetched
data using additional caches or buffers [16], or evict such data
from cache hierarchies when the misprediction is detected [17].
In our approach, we permit speculative executions and memory
accesses that hit in (L1-D) cache but delay memory accesses that
miss in the cache until the speculation is resolved. We refer to this
technique as SafeLoadOnMiss. A very similar approach was previ-
ously proposed in [18]. We make the following modifications to
the previous approach:

– we hold the delayed cache misses in a separate Safe Queue
and use instruction sequence numbers1 to order the misses
when the speculation is resolved instead of dropping the
load misses and allowing the LSQ to retry later as done
in [18] - this reduces performance penalties;

– we use random replacement in primary cache instead of
LRU replacement, potentially mitigating some speculative
interference attacks [19], as stated in [20].

1 The instruction sequence numbers in Gem5 can be viewed as time stamps.
2

Our experiments show that this will result in very minimal perfor-
mance loss and requires minimal hardware: only 5.4% geometric
mean performance loss for SPEC2017 benchmarks, and only 160B
of additional storage for safe queue.

• Obfuscating cache timing with false hits: We use a small fully
associative Cache (labeled Guard Cache) which is used both as a
Victim cache and a Miss cache [21] to create false hits. Any data
item evicted from the primary cache is saved in this Guard Cache.
If the evicted item (or victim) is accessed, it can be retrieved
from Guard Cache, making the access appear as if it was a hit
in the primary cache. To further obfuscate timing, we also rely
on random replacement policy when entries in Guard Cache need
to be replaced. Additional obfuscations can include randomly
not placing ‘‘victims’’ in Guard Cache, thus causing false hits
more randomly. While larger Guard Caches can provide more
protection since victims can be held for longer periods of time
but can lead to higher silicon area and power consumption, we
found that even a small Victim Cache (1 KiB to 4 KiB), may be
sufficient to prevent several types of attacks, particularly those
that rely on Flush & Reload side-channels.

• Obfuscating cache timing with false misses: We randomly
evict cache lines to cause false misses. On every cache hit, we
choose a random cache line for eviction and evict those items
based on how often a cache line should be evicted (eviction
frequency). While such evictions can cause performance penalties,
we have shown that even 10% eviction frequencies can prevent
attacks that are based on Prime & Probe side-channels.

• Safe-mode execution: The microarchitecture enters a preventive
state to mitigate known hardware security attacks such as Spectre
and Meltdown as well as a variety of cache side-channel attacks.
The safe mode can be turned-on by the user to assure secure
execution of critical sections of their programs. Or the system
can be endowed with the capability to detect the presence of
an attack and turn-on the safe mode. In this way, the system
will experience performance impacts only during the safe mode
execution. It may also be possible to randomly switch between
safe and unsafe modes of execution to make it more difficult for
an attack to succeed. This may also make it more difficult for
speculation-interference attack [19] to succeed.

The rest of the paper is organized as follows. Section 2 describes
the background and motivation for our work. Section 3 describes
our SecurityCloak framework design and implementation. Section 4
provides performance results as well as the experimental framework
used for the evaluation. Section 5 includes relevant research that is
related to our work and Section 6 summarizes our conclusions about
SecurityCloak framework.

2. Background and motivation

In pursuit of meeting ever-increasing demands for processor perfor-
mance, computer systems implemented many major microarchitectural
innovations including deep cache hierarchies, out-of-order instruction
execution, branch prediction, and speculative executions, issuing mul-
tiple instructions per cycle, just to name a few. However, these inno-
vations have inadvertently introduced vulnerabilities that can poten-
tially be exploited to leak information that should be secured. The
information may be leaked either through a side-channel or direct
(modification to application code) attacks. The two types of attacks
that have been widely discussed are cache side-channel attacks (for
example, [3–5,22,23]) and speculative attacks (like Spectre [9,24] and
Meltdown [8]). Computer architects have been investigating techniques
to either prevent or at least mitigate (making it harder for an attacker
to successfully launch attacks) these attacks. The solutions can be
implemented in software or hardware.

Among the hardware techniques against cache side-channel attacks
include (i) partitioning caches so that only one process can access

Journal of Systems Architecture 150 (2024) 103107F. Mosquera et al.

i
p
h
e

i

s
c
p

a
d
l

f

i
c
a
d
d

d
n
t
a
m
a
r

t
i
o
a
m

Table 1
Average performance loss for SPEC 2006 benchmarks for different mitigation
techniques.

Mitigation technique Average
performance loss
(%)

Hardware complexity

InvisiSpec-Spectre [16] 5.0 Medium
InvisiSpec-Futuristic [16] 17.0 Medium
CleanupSpec [17] 5.1 Medium
Delay on Miss [18] 11.7 Low
GhostMinion [20] 2.5 Medium

Our SafeLoadOnMiss technique is similar to [18]. However, our implementation
results in smaller performance losses. Also, we collected data for SPEC 2017
benchmarks and not SPEC 2006.

ts partition (and no other process can evict data contained in those
artitions); (ii) changing cache indexing mechanisms or (iii) encrypting
ow an address is mapped to a cache index so that cache misses to an
ntry cannot easily be translated into an address [2,4,11–15].

Spectre-style attacks that rely on speculative execution can be mit-
gated by:

• Disabling speculation. This can lead to significant performance
losses (as much as 89.6%, see Table 5).

• Making invisible the effects of speculatively executed instructions.
This can be achieved by using additional hardware mechanisms
such as buffers or caches [16,20], and committing or discarding
these buffered results on branch resolution.

• Undoing all effects of speculatively executed instructions. This
requires not only squashing speculatively executed instructions
but also invalidating any data that was speculatively brought into
cache hierarchy [17].

• Delaying load misses caused by speculatively executed instruc-
tions (we call this SafeLoadOnMiss). In our approach (which
is somewhat similar to [18]) we permit speculative execution
of instructions that either do not access memory, or memory
accesses that hit in (L1-D) cache, but do not permit (or delay)
memory accesses that miss in cache.2 As we will show in later
sections, our approach incurs minimal overheads in terms of hard-
ware extensions needed and also causes very small performance
degradation.

The performance losses caused by these different techniques are
hown in Table 1. As can be expected, different mitigation techniques
ause different amounts of performance loss and the hardware com-
lexity also varies with these solutions.3 The performance loss depends

on application behavior. For example, an application that has higher
cache miss rates will likely see higher performance losses when ‘‘Delay
Load Misses’’ [18] technique is used. Likewise, ‘‘Undo’’ [17] technique
needs to invalidate more cached entries. Obviously, fewer conditional
branches result in fewer speculatively executed instructions and smaller
amounts of performance losses even if we disable speculation com-
pletely. Although not shown in Table 1, we observe that memory
intensive benchmarks and benchmarks with very high MPKI rates
(e.g., mcf) cause significantly higher than average performance losses
in all the known mitigation techniques.

In a recent paper [25], the authors describe a graphical model to
understand speculation-based attacks such as Spectre and its variations.
Fig. 1 shows a slightly modified version of the attack graph. The key
observation for our purpose is that there is a delay from the time

2 We understand this technique may not prevent Speculative Interference
ttacks [19]. However, as indicated in [20], such attacks can be made more
ifficult by relying on random replacement policy. We will discuss this in a
ater section.

3 The performance numbers and hardware complexity is based on the data
3

rom the cited publications.
a conditional branch (or authorization) is executed, initiating specu-
lative execution until when the branch is resolved (or authorization
resolved). The speculatively executed instructions during this interval
either commit or are squashed based on the resolution. One observation
that can be drawn from the model presented in [25] is that the longer
the delay in resolving a branch decision (or resolving authorization),
the more likely an attack will be successful. In one of the Spectre-like
attacks (see Listing I) that rely on Flush & Reload technique, the array
bounds variable (Asize) is flushed from cache. This causes delays in
resolving array bounds check (line 5) since the bounds variable needs
to be fetched into L1-D cache. The speculative load instructions (lines
6 and 7) along the mispredicted (or unauthorized) path will more
likely complete fetching the data (secret) into cache, which will be
accessed by attacker at a later time. This delay will also correlate to
the performance impacts of the various solutions outlined above. For
example, the ‘‘Undo’’ technique may need to invalidate more cached
data if the delay is longer; or ‘‘Delay Load Misses’’ [18] or our variation
SafeLoadOnMiss may delay several load accesses resulting in higher
performance penalties.

1 Asize = 16
2 A[16] = {0 , 0 , , 0}
3 B[256 ∗ 512]
4 .
5 i f (x < Asize) { // mispredic t
6 s e c r e t = A[x]
7 temp = B[s e c r e t ∗ 512]
8 }

Listing I: A Proof of Concept Spectre Attack [17]

If it is possible to turn-on the mitigation only when needed (either
when an attack is detected, or while executing certain critical code
segments), even the simplest technique (such as preventing specula-
tive execution completely, or preventing speculative memory accesses)
will be acceptable since performance penalties occur only when the
mitigation is on.

Although we focus on side-channel and speculation-based attacks,
the concept of on demand protection is applicable to any known or
potentially new attacks. And the on demand security protection can
be based on attack detection techniques proposed by researchers or
new techniques that may be proposed against new attacks. The tech-
niques should be amenable to turning-on and turning-off on demand.
Some techniques may require extensive overheads when the system
transitions between safe state and unsafe state, including activating and
deactivating certain structures or copying data between hidden buffers
(or GhostMinion [20]) and primary cache memories.

To be able to turn-on protection automatically, it is necessary to
nvestigate how an attack can be detected. Side-channel attacks rely on
ache accesses, thus most existing methods for detecting side-channel
ttacks rely on the use of hardware performance counters to extract
ata of the cache utilization and use machine learning techniques to
etect attack patterns [3,4,26–28].

To be practical, a detection technique should provide real-time
etection capabilities, result in low levels of false positive and false
egative alarms, and incur only small amounts of hardware overhead
o monitor the system. With this in mind, our detection of Spectre-like
ttacks and other side-channel attacks on cache memories is based on
onitoring cache flush operations. However, other known monitoring

nd detection techniques can also be used as long as they satisfy the
equirements listed above.

To summarize, we feel that On Demand security can provide a
rade-off between performance and security, by using protection or mit-
gation against attacks only when an attack is detected (or suspected),
r to protect critical sections of applications. One may also Turn On
nd Turn off security protection randomly to make attacks significantly
ore difficult to succeed.

Journal of Systems Architecture 150 (2024) 103107F. Mosquera et al.

3

p
o
m
n
t
a

i
t
d
n
a

Fig. 1. Attack graph of the SafeLoadOnMiss scheme.
Fig. 2. Guard cache to create false hits. A similar structure can be used at L2.

. SecurityCloak framework

Our goal is to facilitate On Demand protection against hardware
security attacks. In our approach, we explore supporting the ability to
protect critical code sections by entering safe modes. For example, this
can be achieved using Enter_Safe_Mode() and Exit_Safe_Mode() system
calls as shown in Listing II. Only the process that activated the safe
mode can deactivate the protection.

1 Enter_Safe_Mode () ;
2
3 C r i t i c a l _ c o d e
4
5 Exit _Safe_Mode () ;

Listing II: On Demand Protection

While any security mitigation technique can be relied upon for
rotection, the techniques should be easy to be turned on and turned
ff, incurring minimal overheads in switching between safe and unsafe
odes. It may also be possible to include multiple mitigation tech-
iques for different types of attacks and users can select a mitigation
echnique based on the level of security desired, for example, as an
rgument to Enter_Safe_Mode() call.

It may be possible to automatically enable safe mode when an attack
s detected (or suspected) - the mitigation selected can be based on the
ype of attack detected. SecurityCloak framework can use any known
etection approaches for some known detection techniques. It is also
ecessary to determine when it is okay to exit the safe mode. More
4

dvanced invocation of safe modes in the presence of persistent or
repeated attacks can include techniques similar to ‘‘exponential back-
off’’ whereby the amount of time spent in safe mode increases every
time the safe mode is invoked. With these goals, we will describe our
SecurityCloak design using Gem5 [29]. While in Safe Mode we can
use either our Guard Cache to mitigate cache timing attacks or use
Safe Queue to delay load misses during speculative execution, or both.
To make Speculative Interference attacks [19] more difficult, we use
random replacement policy in our caches while in Safe Mode.

3.1. Creating false hits and false misses

Cache side-channel attacks rely on measuring memory access times
to determine if an access to a specific cache line (or set) is a hit or a
miss: a miss causes longer access times. This observation can be used by
an attacker to obtain information regarding which memory addresses
a victim accessed, and possibly retrieve data from those addresses.

Victim Caches are generally very small and fully associative caches
and were originally used to improve performance by eliminating cache
thrashing in direct mapped caches [21]. In a more recent work [30],
victim caches were used to house data evicted by speculative load
accesses (for example, ReViCe [30]). We feel this requires complex
bookkeeping since one needs to distinguish between speculative and
non-speculative load accesses, as well as remove misspeculated data
from victim cache. We use Guard Caches similar to Victim Caches to
create false hits — any data item evicted from the primary cache is
saved in the Guard Cache. If the evicted item is accessed, it can be
retrieved from the Guard Cache, making the access appear as if it was
a hit in the primary cache, since the access times to a Guard Cache
and primary cache are comparable. We also rely on random replacement
policy when entries in the Guard Cache need to be replaced, to further
obfuscate information leak. Also, not every data evicted from primary
cache is placed in the Guard Cache but treated as a normal cache miss.

We will also use the Guard Cache as a Miss Cache [21]– the missing
data is brought into the Guard Cache, unlike in the case of a victim
cache where the missing data is brought into the primary cache and the
evicted data is stored in the Guard Cache. Such data items are likely
to be short lived in Guard Cache unlike when the data is brought to
primary cache since Guard Cache is very small compared to primary
caches. This can add to additional obfuscation to cache timing. These
different uses of the Guard Cache make it difficult for an attacker to
discover the presence of a Guard Cache, its size or when it is used or
not used. We saw negligible performance gains or losses with Guard
Caches: larger Guard Caches can provide more protection since victims

Journal of Systems Architecture 150 (2024) 103107F. Mosquera et al.
Fig. 3. Simulated Prime & Probe Attack: False hits and false misses obfuscate cache misses and timing.
can be held for longer periods of time but can lead to higher silicon area
and consume more power. We found that even a small Guard Cache (1
KiB or 2 KiB at L1 level and 2 KiB to 4 KiB at L2 or LLC levels), is
sufficient to prevent several types of side-channel attacks.

We create false misses by randomly evicting cache lines. On every
L1-D (or L2) cache access that is a hit, we select a cache line randomly
and evict the selected data based on the eviction frequency but do not
place it in the Guard Cache. We varied the eviction frequency from
5% to 40%. The random evictions lead to performance losses but if
the percentage of evictions is kept around 10% (which is sufficient to
prevent currently known side channel attacks), the loss is reasonable
(in the order of 33%) compared to turning off speculation completely.
Additionally, if the random evictions are used only when in Safe Mode
the performance losses can be reasonable. For example, if the random
evictions are in place only for 10% of an application execution, assum-
ing an attack will only last that long or critical sections constitute only
10% or execution times, the performance loss is only 2% (see Fig. 11).
The false misses will make attacks using such techniques as Evict &
Time [3] and Prime & Probe [3,4] more difficult since the attacker will
see many more misses than those caused by victim accesses.

Fig. 2 shows the working of the Guard Cache in the memory
hierarchy. The arrow labeled ‘‘1’’ shows the case when the Guard Cache
is not used — data evicted from the primary cache (L1, L2 or LLC)
is not stored in the Guard Cache. Arrow labeled ‘‘2’’ indicates when
a data item is evicted from a primary cache and stored in the Guard
cache (used as a victim cache). The arrow labeled ‘‘3’’ indicates the case
when the missing data is brought into the Guard cache (used as Miss
Cache) and not into the primary cache. The arrow labeled ‘‘4’’ shows
the case when false misses are activated. As described above, data from
the primary cache is evicted randomly.

We can deploy both false hits and false misses together to increase
the randomization of cache timing. Fig. 3 shows the results from a
simulated Prime & Probe attack. The left column shows the normal
mode indicating what attacker sees as cache misses caused by the
victim’s code (evicting attackers primed data). The middle column
shows that the attacker sees additional cache misses caused by false
misses strategy (shown in red). The right column indicates the case
when both false hits (using the Guard Cache) and false misses are
turned on. Now some misses caused by the victim’s access, seen in the
5

left column, appear as hits (shown in the shaded yellow area) due to
false hits.

The use of the Guard Cache causing false hits may prevent attacks
that rely on Prime & Probe. The left-hand side of Fig. 4 shows a
successful attack using a proof-of-concept code from [17]: characters
of the secret key (The Magic Words) are visible. The right-hand side of
the figure shows the case when a Guard Cache is used to cause false
hits, and it can be seen that the attack is not successful (the characters
of the secret are not visible).

Speculative attacks are based on flushing array bounds variables
from caches, leading to delays in checking for out-of-bounds accesses
(since the array bounds variables are not in the cache) and the attacker
can rely on speculative execution to bring large amounts of out-of-
bounds data to the cache during this delay. Our Guard Cache prevents
such attacks since it will capture the flushed array bounds variable in
Guard Cache, reducing the time for bounds check, and limiting the
accesses to out of bounds data.

For attack models based on cache timing analyses, our Guard Cache
and random evictions will make attacks significantly more difficult as
the number of hits and misses will change. If the Guard Cache is used
to capture every evicted data, an attacker may be able to deduce the
size of the Guard Cache. That is why we propose to randomly change
the fraction of evicted data that is stored in the Guard Cache, making
it difficult for the attacker to observe the size of the Guard Cache.

As shown in the table at the bottom of Fig. 4, even a 1 KiB Guard
Cache at L1-D level obscures data during a Spectre attack and prevents
the attack, if the attacker is using Flush & Reload side-channel. False
Misses are more effective against Prime & Probe side-channel attacks.
While 6% random evictions are less likely to prevent this attack, 8% will
partially mitigate the attack by obfuscating some characters, and 10%
or higher rates of evictions will prevent the attack. However, even 6%
random evictions will significantly vary cache timing, making it more
difficult for the attack to be successful. These numbers are based on
the specific proof of attack codes, but the sizes of Guard Caches and
the frequencies of evictions can be varied to achieve desired levels of
protection. Section 4.3 provides a detailed analysis of the effectiveness
of Guard Cache while Section 4.4 describes the effectiveness of random
evictions.

Journal of Systems Architecture 150 (2024) 103107F. Mosquera et al.
Fig. 4. Spectre attack (a) Baseline mode (b) With guard cache.
3.2. Delay speculative load misses or SafeLoadOnMiss

While False Hits and False Misses may be used to mitigate spec-
ulative attacks using proper Guard Cache sizes and random eviction
frequencies, we also present a technique that delays any speculatively
issued loads that miss in L1-D cache. This is similar to the one proposed
in [18]; however, we queue speculative load misses in a separate queue
and process the misses as soon as these loads become non-speculative,
without reissuing the load request as done in [18].

3.2.1. SafeLoadOnMiss
In modern processors, the Load Store Queue (LSQ) is responsible

for keeping track of all the memory/cache requests (loads, stores,
cache maintenance, etc.). The LSQ (see Fig. 5) can speculatively send
a load request 1⃝ to the L1-D cache for each load instruction when
the corresponding address generation is complete and the load is not
aligned with a previous ready-to-commit store present in the LSQ. Even
though the stores can be executed speculatively, the LSQ only writes
back the store requests when they become non-speculative (ready-to-
commit). When there is a misprediction and the pipeline is flushed,
partially/fully executed instructions (loads and stores) in the LSQ are
flushed. These load requests, store requests, and other cache mainte-
nance requests like cache flush requests are queued before the L1-D
cache until the cache controller serves them. From here onward we
use the term Mandatory Queue (Fig. 5) for the queue which holds all
the requests to the L1-D cache (as implemented by Ruby coherence
protocol in Gem5 [29]). The cache controller fetches the requests from
the Mandatory Queue and performs necessary actions. When there is
a cache miss, load/store request is added to the Miss Status Holding
6

Fig. 5. SafeLoadOnMiss design.

Register (MSHR), and a new request is sent to the next level cache
or the memory. The speculatively executed loads that miss the cache
are responsible for bringing the secret information directly and/or
indirectly when the processor is under attack.

We propose a new structure called Safe Queue (similar to the Manda-
tory Queue) to delay the load requests that miss in the cache. Initially,

Journal of Systems Architecture 150 (2024) 103107F. Mosquera et al.

n
(
i
p
t
r
t
a
m

m
t
r

R
t
Q
l
d
a
t
t
p
i
t
i
Q
t

s
i
d
t
t
l
I
a
m
a
l
t

3

c
t
r
i

a

L
L

s
L
Q
n
a
a
h
c
s
h
e
o

3

r
a
s
t
m
i
L
a
r
c
t
p
i
e

t
T
r
m

the load request arrives at the Mandatory Queue 1⃝ and is read by the
cache controller. When the cache controller identifies that the load is
a miss, instead of adding the request into MSHR and sending a new
request to the next levels of the memory hierarchy, it pushes the request
to the Safe Queue 2⃝. This mechanism blocks all the load misses and
lets the load hits to be served by the cache controller. Since the store
requests are always non-speculative, there is no need for them to be
blocked even if it is a cache hit or miss. It is important to note that the
Mandatory Queue is specific to Ruby coherence protocol in Gem5 [29]
but other micro-architectures may use similar structures. Safe Queue is
the only additional buffer required in our design apart from the minor
changes to the control logic.4

Gem5 [29] maintains a monotonically increasing unique sequence
umber (1, 2, 3, 4 . . .) for each instruction entering the pipeline
similar to the timestamp in Ghostminion [20]). This sequence number
s also added to the metadata of all the cache requests. When the
rocessor determines a branch misprediction and squashes (or flushes)
he pipeline, the LSQ generates a new cache request called squash
equest with the sequence number of the mispredicted branch instruc-
ion. When the cache controller receives the squash request, it drops
ll the load requests which have a higher sequence number than the
is-predicted branch from both Safe Queue and Mandatory Queue.

When there is a non-speculative load that is a miss (true program
isses), the processor stalls because the load request is blocked in

he Safe Queue. To release the load, we generate another new cache
equest called non-speculative request with the sequence number to

communicate that the load is safe to be served. The LSQ generates
the non-speculative request whenever the load instruction becomes the

OB head (i.e., becomes not-speculative). When the cache receives
he non-speculative request, it moves the corresponding load from Safe
ueue to the top of the Mandatory Queue 3⃝. This will ensure that the

oad is served as quickly as possible to reduce the stalling time. The
etermination of the load request being non-speculative can also take
dvantage of Bell and Lipasti conditions [31] rather than waiting for
he load to reach the head of ROB. This helps moving requests from
he Safe Queue to Mandatory Queue sooner and slightly improve the
erformance. Each entry in the Mandatory Queue maintains a flag to
ndicate whether it is speculative or not. The cache controller allows
he requests to proceed if the flag is set to ‘‘non-speculative’’ even if it
s a load miss. When a request is moved from Safe Queue to Mandatory
ueue upon a non-speculative request, the flag is set to ‘‘non-speculative’’

o avoid possible deadlock.
By using the above mechanism, we avoid any changes to the cache

tate by the speculative load misses and block the attacker from bring-
ng secret information to the cache. In [18], the authors propose to
rop the load misses and allow the LSQ to retry later. The repeated
ries may lead to uneven delays in processing correctly predicted loads
hat miss in the cache. This may explain in part why the performance
osses reported in [18] are higher than those reported in this paper.
n the rare case when the Safe Queue is full, load misses are dropped
nd the LSQ must retry when the resources are available (similar to the
echanism when the MSHR is full). As we show in Section 4.8, even
small 16 entry Safe Queue is more than adequate to track speculative

oad misses for SPECspeed 2017 benchmarks. Thus, it is very unlikely
hat the Safe Queue will be full.

.2.2. Real-time attack detection
Speculative execution attacks rely on widely known cache side

hannels such as Flush & Reload [5] and Prime & Probe [3,4] to infer
he secret information. The Flush & Reload side channel has a higher
eliability and less noise compared to Prime & Probe and is often used
n most speculative attacks [32]. We observed that the Flush & Reload

4 Although our implementation is based on Ruby system in Gem5, our
pproach of using a Safe Queue can be implemented in any microarchitecture.
7

c

uses an excessive number of cache flush instructions (CLFLUSH in X86,
MCR in ARM) and it can be used as an indicator of an attack underway.
Instruction address and permission bits can be used to distinguish a
cache flush used by an attacker and system activities (e.g. TLB shoot-
down). Innocuous user programs rarely use cache flushes and if it does,
the program will trigger a false positive. This detection technique can
be improved using (off-line) machine learning algorithms to identify
the nature and frequency of flush instructions occurring when an attack
is underway, including the likelihood of the same cache line/set being
flushed repeatedly, and higher L2/L3 cache occupancy. In this paper,
we utilize a more conservative and simple approach to detecting an
attack whenever a cache flush request is present. Evaluating different
detection techniques published in the literature for their suitability for
real-time attack detection and accuracy of detection is left as future
work.

3.2.3. Alternate between safe and unsafe modes
As explained in Section 3.2.2, when an attack is detected or when

Enter_Safe_Mode() call is made, a register/flag is updated to indicate
that the system is switched from UnsafeBaseline to SafeLoadOnMiss. The
1-D cache will start moving all load misses to the Safe Queue and the
SQ starts generating necessary squash and non-speculative requests to

remove or release load misses. Our experiments with the Proof of Con-
cept attack presented in [17] (see Listing I, in Section 2) showed that
waiting in the SafeLoadOnMiss mode for 1000 committed instructions
and switching back to UnsafeBaseline after detecting an attack if no
additional cache flushes occurred is sufficient to successfully avoid the
attack.

When switching from SafeLoadOnMiss to UnsafeBaseline, L1-D cache
tops any new load misses being placed in Safe Queue. However, the
SQ keeps generating squash and non-speculative requests until the Safe
ueue becomes empty. A system register is maintained to indicate the
umber of valid entries in the Safe Queue. It is also possible to immedi-
tely remove all Safe Queue entries when switching from safe to unsafe
nd slightly improve the performance. However, this may increase the
ardware overhead for the Mandatory Queue (see Section 4.8) and the
omplexity of the design. When the Safe Queue becomes empty, the
ystem fully recovers from the Safe Mode and continues working under
igh performance (and unsafe) mode. This mechanism allows us to
asily switch back and forth without significant overhead which is one
f the main goals of the SecurityCloak framework.

.2.4. Random replacement policy
In the baseline UnsafeBaseline mode, we use the Tree-PLRU [33]

eplacement policy (default policy of Gem5 [29] Ruby caches) for
ll cache levels. However, the LRU based replacement variants are
usceptible to attacks such as Speculative Interference [19]. The at-
acker can exploit the replacement state changes (e.g. loads reordering)
ade by the speculative execution to indirectly recover or infer secret

nformation. We use random replacement policy at L1-D cache and
2 shared cache levels to mitigate such attacks. Table 2 shows the
verage performance loss for SPEC2017 benchmarks when the random
eplacement policy is used for the baseline (UnsafeBaseline) system
ompared to using Tree-PLRU replacement policy. As can be seen,
he use of random replacement policy does not cause a significant
erformance loss and since we use the random replacement policy only
n Safe Mode, the performance loss due to random replacement will be
ven less.

When the system detects an attack and switches from UnsafeBaseline
o SafeLoadOnMiss, cache replacement policy is also changed from
ree-PLRU to random. When the system exits Safe Mode, the cache
eplacement reverts to Tree-PLRU. This switching between the replace-
ent policies may obfuscate some side-channel attacks that depend on
ache meta-data.

Journal of Systems Architecture 150 (2024) 103107F. Mosquera et al.
Fig. 6. Guard cache used as a victim cache and miss cache. X-axis designates the fraction of the evicted lines that are moved to guard cache (VC%) and the fraction of demand
misses that are brought to guard cache (MC%).
Table 2
Average performance loss due to random replacement policy compared to Tree-PLRU.

Configuration Slowdown (%)

L1-D Random replacement 0.3
L2 Random replacement 3.2
Both together 3.4

Table 3
System configuration.

Core

Core 1-core Out-of-order, no SMT, 2 GHz
Pipeline 192-entry ROB, 64-entry IQ, 32-entry LQ, 32-entry

SQ, 256 Int/256 FP registers
Tournament
Predictor

2-bit, 2048-entry local, 8192 global,
8192 choice, 4096 BTB, 16 RAS

Caches

L1-I Cache 32 KiB, 4-way, 2-cycle latency
L1-D Cache 64 KiB, 8-way, 2-cycle latency
L2 Cache 2 MiB, share, 16-way, 20-cycle latency
Coherency Directory based MESI Ruby protocol

Rest of the System

Memory DDR3_1600_8 × 8, 8 GiB
Safe queue 64 entries
Mandatory
queue

64 entries

4. Experimental evaluation

In this section, we describe our experimental setup and evaluation
of our techniques for mitigating side-channel attacks and attacks based
on speculative execution. Our techniques were described in Section 3.

4.1. Experimental setup

We evaluate our design using Gem5 [29] System-call Emulation (SE)
mode to accurately model the high performance X86 system showed in
Table 3 (similar to prior works [16,17,20]). We implemented all the
features described in Section 3 and in this section we will include an
evaluation of our SecurityCloak framework. For this contribution, we
focused on a single core. However, we are confident that the approach
can be extended to multicore systems and multiple levels of caches. We
will investigate the multicore implementations in our future work.
8

Table 4
Workload characteristics.

Workload Branch
missprediction
rate (%)

L1-D cache
miss rate (%)

Branch MPKI L1-D MPKI

bwaves 1.38 0.01 0.00 3.95
cactuBSSN 0.63 0.93 0.30 2.98
deepsjeng 0.07 6.28 6.88 0.28
exchange2 0.00 3.69 4.27 0.00
fotonik3d 0.01 1.86 4.61 0.05
gcc 2.49 4.22 9.87 9.61
imagick 1.73 0.02 0.02 7.38
lbm 6.40 3.09 0.15 21.36
leela 0.04 2.90 4.42 0.15
mcf 3.37 5.29 10.73 15.51
roms 3.45 0.20 0.06 11.60
wrf 0.89 1.29 0.39 2.97
x264 0.02 0.12 0.06 0.06
xz 0.06 7.91 5.80 0.25

4.2. Workloads

In our experiments, we use 14 SPECspeed 2017 benchmarks with
the reference data set. We forward the execution by 10 billion instruc-
tions to generate the checkpoint and simulate 500 million instructions.
Important characteristics of the workloads are shown in Table 4. As
discussed in Section 2, Branch Misprediction Rates and L1-D Cache
Miss Rates play a significant role on the performance lost due to
any security protection mechanism. For our mitigation technique of
delaying speculative cache misses, higher L1-D miss rates correlate to
higher performance loss since more load instructions will be delayed
until the speculation is resolved. Likewise, higher number of branches
and lower branch mispredictions can impact the performance lost since
more branches cause more speculations and when the misprediction is
low, delayed load instructions will need to be completed. To better un-
derstand the absolute number of branch mispredictions and load misses
present in the workload, we include the MPKI (Misses/Mispredictions
Per Kilo Instructions) values in Table 4.

4.3. Analysis of false hits:

In Section 3.1 we have shown that even a small Guard Cache (1
KiB or 2 KiB at L1 level) can prevent attacks that rely on Flush and
Reload side-channels. Here we present the performance impacts caused
by our Guard Cache for several different SPEC 2017 benchmarks. We

Journal of Systems Architecture 150 (2024) 103107F. Mosquera et al.

v
K
a
c
h
f
f
h
m
e
F
o
(
G
s

Fig. 7. Additional cache hits due to guard Cache.

aried the Guard Cache sizes: 1 KiB–2 KiB at L1-D level and 2 KiB–4
iB at L2 level. In Section 3.1 we have shown that even these sizes
re sufficient to prevent attacks that rely on Flush and Reload side-
hannels and these sizes for Guard Caches require very small additional
ardware. We varied the fraction of the time a data item that is evicted
rom the primary cache (L1-D or L2) is moved to the Guard Cache: the
irst number for each result in Fig. 6 shows this percentage. We varied
ow often the Guard Cache is used as a Miss Cache; that is, on a demand
iss, the missing data is brought in to the Guard Cache, and no data is

victed from the primary cache. The second number for each result in
ig. 6 shows this percentage. Thus, 90-10 shows the results when 90%
f all evictions from the primary cache are moved to the Guard Cache
used as victim cache), and 10% of demand misses are brought into
uard Cache (used as miss cache). As can be seen, the results in Fig. 6

how very minimal impact on performance ranging between −0.2% to
3.0% performance loss. Negative bars indicate performance gains —
LRU replacement policy for primary caches results in performance gains
than when Random Replacement is used. The use of Guard Cache as a
Miss Cache results in slightly higher performance losses than when used
as a victim cache.

Fig. 7 shows some memory access behaviors of applications includ-
ing average number of data accesses per 1000 instructions and average
number of cache misses per 1000 instructions (first four columns in
the figure). The figure also shows the average number of L1-D and L2
cache misses that are satisfied by the Guard Cache per 1000 instructions
executed. Guard Cache is likely to result in performance benefits when
the application exhibits higher cache conflicts; this can be seen from a
higher percentage of false hits. Consider cactus with 2.92 L1-D misses
per 1000 instructions without a Guard Cache and a Guard Cache of
even 1 KiB effectively eliminates these cache misses (shown as false
hits). This also indicates that most side-channel attacks such as Flush
& Reload that rely on observing which accesses cause misses will fail
because most of such cache misses (or Flushes) become invisible with
use of the Guard Cache. We have already demonstrated (see Fig. 3 in
Section 3) that Guard Cache makes many of the L1-D evictions caused
by Prime & Probe attack invisible.

The benchmark lbm has very high L1-D miss rates (21.36 misses per
1000 instructions at L1-D), but these misses are not satisfied by Guard
Cache. Such a behavior may potentially indicate that the application
is a streaming application. Fig. 7 shows false hits data for different
Guard Cache sizes. Although not shown here, we observed that most
applications see very insignificant performance impact due to Guard
Caches that are larger than 4 KiB or 8 KiB. But applications with higher
number of data accesses place higher demand on Guard Cache and
larger Guard Caches may be more beneficial for such applications. For
example, roms appears to benefit from larger Guard Cache (more false
hits with larger Guard Cache). This behavior may indicate capacity
misses since the application shows high MPKI (11.6 misses per 1000
9

c

instructions), but 1 KiB Guard Cache shows very minimal benefit. Since
our goal is prevention of attacks and not improved performance. we feel
1 KiB or 2 KiB Guard Caches are sufficient.

Fig. 7 also includes additional cache hits due to Guard Caches at L2
level. The L2 cache misses that are found in L2 level Guard Cache is
very small. This is expected since there are fewer memory accesses and
misses at L2 level. Moreover, it should be noted that we use Random
Replacement policy with our Guard Caches. This means that a data item
evicted from the primary cache and moved to the Guard Cache may be
evicted later when another data item evicted from the primary cache
needs space in the Guard Cache and Random Replacement policy may
cause more recently evicted item to be replaced in the Guard Cache.

We feel that the hits in Guard Cache (which were misses in the pri-
mary cache) may be used as a way to detect Flush & Reload type attacks
since the attacker hopes to create many misses while GC captures the
evicted data.

The data in Figs. 6 and 7 are collected with no side channel attack.
However, when an attack such as Prime & Probe, Flush & Reload or
Evict & Time is underway, the GC will have higher impact on perfor-
mance. These attacks result in higher levels of cache misses, many of
which will be caught by the Guard Cache. For example, for simulating
a proof of concept attack representing Flush & Reload as well as Spectre
attack (the same attacks that we used to produce Figs. 3 and 4), 1 KiB
Guard Cache at L1-D resulted in more than 100% additional cache hits.

4.4. Analysis of false misses

Before we present the performance impact of randomly evicting
cached data on SPEC 2017 benchmarks, we present how and when
random evictions can be effective. We use the Proof of Concept (PoC)
code shown in Listing I to simulate Spectre attack. The PoC code
assumes that the attacker knows the range of addresses where the
victim’s secret is stored. The attacker injects code into victim’s program
to force misprediction of array size accessed by the victim, forcing
accesses to a range of addresses where the key is stored. If the victim
accesses an address containing the key in the mispredicted path, that
item will be brought into (L1D) cache. For the purpose of the PoC
attacks, the key is considered as 40 ASCII characters.5 When a character
in the key is fetched by the victim, the attacker injected code uses
the value of the character (i.e., 8-bit value) as index to a 256-element
array and stores a value. Later the attacker checks which one of his
256-element array contains a value and this in turn is used as the key
(character) accessed by the victim. The attacker can use either a Prime
& Probe or Flush & Reload side-channel to find the key.

4.4.1. Using Prime & Probe side-channel
If Prime & Probe is used, attacker first ‘‘primes’’ (or fills) the 256

entries of his array. When victim accesses a character in the key,
and that key (8-bit ASCII) is used as index into the attacker’s array
by the victim program, one of the attacker’s array elements will be
invalidated (assuming both attacker and victim share the address space
and MESI type coherence protocol is used). When the attacker ‘‘probes’’
and encounters an invalidated array element, he/she can discover the
value of the character accessed by the victim. The main observation
here is that the attacker is searching for misses among his (256) array
elements. Our random evictions can mitigate the attack by causing
more misses among attacker array characters. The obfuscation will
occur only if the randomly evicted cache lines are among the (256)
array elements that will be primed and probed by the attacker. This in
turn depends on the total size of the cache and the portion of the cache
that will be occupied by the attacker’s array. In our experiments, the
total size of the cache is 1024 lines (for a 64 KiB cache with 64 bytes per

5 Although the attack contains 40 characters, we have shown only 15
haracters ‘‘The Magic Words’’ in Fig. 4.

Journal of Systems Architecture 150 (2024) 103107F. Mosquera et al.
Fig. 8. Random evictions (Falses misses) at different eviction frequencies in L1D cache. The minimal cache misses evicted are the randomly evicted cache lines that attacker
encounters as misses which can mitigate the chance of a successful attack.
Fig. 9. Average performance loss using random evictions (FalseMiss Scheme) at different eviction frequencies in L1D and L2 Caches.
line) and the attacker uses one-fourth (256) of these lines. A random
eviction has a 25% probability that an attacker’s data is evicted. To
be successful in preventing the attack, we need to evict multiple cache
lines belonging to the attacker.

To understand the relationship between the random eviction fre-
quency and the fraction of total cache that the attacker primes and later
probes (we call this cache occupancy), consider an extreme case where
the attacker primes only 2 cache lines, assuming that the key is one of
two different characters. If the cache contains 1024 lines, there is only
one-in-512 (or 0.002) chance that a random eviction removes one of
the two attacker’s cache lines. The probability that we can randomly
evict both attacker cache lines so that the attacker will not be able to
find the correct key is at most 1/(512*512) but likely much lower as a
random eviction may evict the cache line multiple times. On the other
hand, consider the case where the attacker primes and probes 1024
cache lines (the entire size of the cache). Every random eviction will
evict an attacker’s data making it very easy to prevent attacks.

Fig. 8 shows more details about the effectiveness of random evic-
tions for different eviction rates. The column ‘‘Minimal Cache Evic-
tions’’ indicates the minimum number of random evictions that fall
within the attacker’s 256 cache lines. The attacker repeats the Prime
& Probe process 5 times for each character. Since only the cache line
accessed by the victim will evict attacker data, repeating Prime & Probe
10
process improves the confidence in the key detected. To prevent the
discovery of the key, our random evictions must also repeatedly evict
the same cache lines (besides the key). This is likely to happen if the
‘‘Minimal Cache Evictions’’ is high. As can be seen at 10% random
eviction frequency, at least 83 of the attacker’s data is evicted on
every attempt, and for the given Proof of Concept this appears to be
more than sufficient to completely prevent the attack. However, at 8%
frequency, attacker was able to discover some of the characters in the
key but not all. It should also be noted that the attack may be successful
even at 10% evictions if the Prime & Probe process is repeated more
than 7 times for each character. At higher random eviction frequencies
(say at 30% or 40%), the minimal cache misses encountered by the
attacker reaches 256 (all of attacker’s data), and the attacker is unlikely
to succeed even after numerous attempts.

Another data included in Fig. 8 is how the difficulty presented
to the attacker increases when random evictions are used. The sixth
column shows the minimum number of times the attacker must repeat
the Prime & Probe to discover the victim’s key characters. As we
stated previously, the Proof of Concept attack repeats the Prime &
Probe 5 times to discover each character (a total of 200 times to
obtain the full 40-character key). But the data in Fig. 8 shows that as
the random evictions are used, the attacker must repeat the Prime &
Probe many more times. For example at 10% random eviction rate, the

Journal of Systems Architecture 150 (2024) 103107F. Mosquera et al.

f
e

Fig. 10. Additional L1 misses per kilo instructions for different frequencies of random
evictions.

attacker must try Prime & Probe at least 7 times to discover a character
(at least 280 times for 40-character key). We emphasize that this is
the minimum and it often takes many more tries since evictions will
randomly evict different cache lines. At random frequencies higher than
30%, the number of tries needed quickly and exponentially increases.
This is because, as stated previously, at these frequencies, attacker sees
cache misses (repeatedly) in all the cache lines he/she primed due
to random evictions, making it almost impossible to single out the
character that is part of the key. Thus, random evictions either prevent
the attack or make it much more difficult for the attack to succeed.
While higher random eviction frequencies aid in the prevention or
mitigation of attacks, since the performance loss increases with higher
frequencies, one should rely on such higher random evictions only for
critical code sections as we will describe later in this section and shown
in Fig. 11.

In summary, the number of cache lines used by the attacker in
relation to the total size of the cache (or cache occupancy) and the
number of times an attacker repeats the priming and probing deter-
mines the random eviction frequencies needed to successfully obfuscate
the attack. Additionally, since in our implementation, we only consider
(random) evictions on a cache hit, the probability of evictions also
depends on the cache hit rates. For example, when the random eviction
frequency is very high, our method evicts most of the cache lines,
causing fewer hits, and this in turn, reduces the probability of further
evictions. In our experiments, frequencies higher than 30% lead to the
eviction of most, if not all, of attacker’s 256 array elements. Additional
evictions can only evict the attacker’s data repeatedly and lead to no
further obfuscation.

4.4.2. Using Flush & Reload side-channel
The attacker can also use Flush & Reload side-channel attack to dis-

cover this key. In this method, the attacker flushes his/her (256) array
elements (in addition to flushing array size as described in Section 2).
When the attacker injected code makes the victim access one of these
array elements using the key character as an index, a cache line of the
attacker array will be filled and becomes valid. The attacker reloads
each of 256 array elements to see which of his/her array elements
causes a hit to discover the key. Once again, the attacker repeats the
experiment several times to be confident of the array element that was
accessed by the victim. For our random evictions to be successful, we
need to evict the array element accessed by the victim, after the victim
accesses it but before the attacker checks (this would cause a miss when
the attacker reloads the data). This requires a very high frequency of
random evictions. As we have shown, higher eviction frequencies can
11

1

lead to excessive performance loss. But using Guard cache as a victim
cache can prevent Flush & Reload based attack as shown in Fig. 4. The
data flushed by attacker will be captured in the Guard Cache and when
the attacker reloads the data, most, if not all, array elements appear to
be hits, thus obfuscating the discovery of victim’s key characters.

4.4.3. Performance impact of false misses
We now present the performance impact of random evictions. Fig. 9

shows the performance loss for SPEC 2017 benchmarks when cache
lines are randomly evicted. On every cache hit (either at L1-D or L2),
we decide if a random cache line should be evicted based on the
eviction frequency. The data in Fig. 9 is for different eviction frequencies.
A higher frequency of evictions will cause higher performance losses.
For example, if a cache line is evicted 20% of the time a L-1D cache
access is a hit, we see a geometric mean performance loss of 90%
for SPEC 2017 benchmarks. This is an unacceptable performance loss;
however, it can cause significant obfuscation of cache access times.
As previously shown in Fig. 4, 10% frequency of random evictions
is adequate to cause sufficient obfuscation to prevent Prime & Probe
side-channel attacks. A 10% random eviction frequency leads to a
33% geometric mean performance loss for SPEC 2017 benchmarks.
In our experiments, we evicted both modified and unmodified data
from caches. The performance loss due to random evictions can be
minimized if only unmodified data is selected for random evictions.
However, an attacker may circumvent the impact of random evictions
by repeatedly writing the same data.

Fig. 9 shows that the performance loss at L2 due to random evictions
is significantly smaller since there are significantly fewer accesses to L2.
We only select cache data for eviction when L2 cache is accessed and
the access is a hit.

Fig. 10 shows additional cache misses per 1000 instructions encoun-
tered by applications that are caused by random evictions. The figure
also includes L1-D cache accesses per 1000 instructions and cache
misses for 1000 instructions in the baseline (without random evictions).
Since we apply random evictions on every (L1-D) cache hit, higher
cache hits in the baseline can lead to more frequent random evictions.
On the other hand, applications that have higher miss rates will likely
see less impact due to random evictions as fewer additional cache
misses will be encountered by the applications. Streaming applications
may not see the effects of false misses since the randomly evicted data
may not be accessed by the application. Random evictions may even be
beneficial for such applications since when a truly missing data needs
to be brought into the cache, there is no need to find a Least Recently
Used cache line for replacement as the cache contains many invalid
entries. Consider lbm and wrf_s, both have about the same number of
L1-D accesses per 1000 instructions, (see Table 4) but lbm has higher
miss rate (MPKI of 21.36 compared to 2.97 for wrf_s). With higher hit
rates (and lower miss rates) wrf_s encounters additional cache misses
with random evictions. The benchmark lbm with higher miss rates and
lower hit rates encounters fewer additional misses caused by random
evictions. The application mcf has higher L1-D accesses and higher
miss rates which explains the higher number of additional cache misses
encountered by the application. The benchmark exchange2_s has fewer
L1-D accesses but very low miss rates — indicating that most of the
accesses are hits which causes a higher number of random evictions.
It should be remembered that higher false misses can aid in further
mitigating side-channel attacks.

4.4.4. Using random evictions only when needed
Since high random eviction rates can cause significant performance

losses, this method should be used only when needed, for example, to
protect critical code sections or when an attack is detected. To simulate
turning on protection only when needed we experimented by turning-on
alse misses (or random evictions) only for a fraction of the application
xecution time. For example, when the false miss strategy is enabled

0% of the execution time of an application, false misses are introduced

Journal of Systems Architecture 150 (2024) 103107F. Mosquera et al.

p

t
l
h
b
p
b
v
p
S
a
T

4

s
b
w
o
p
t
s
a
t
m
a
O
u
s
e
p
w
o
o
e
a
1
a
p

4

r
t
a
f

Fig. 11. Performance loss when random evictions at L1-D are activated only for a
ortion of application execution times.

Table 5
Execution times using different mitigation techniques for SPECspeed 2017 benchmarks,
normalized to unprotected (UnsafeBaseline) baseline.

Workload NoSpeculation SafeLoadOnMiss SafeLoadOnMiss +
Random replacement

bwaves 1.3326 1.0000 1.0822
cactuBSSN 1.1003 1.0168 1.0180
deepsjeng 1.6377 1.0040 1.0051
exchange2 2.7800 1.0000 1.0000
fotonik3d 4.3716 1.0000 1.0001
gcc 3.0320 1.0895 1.1353
imagick 2.3592 1.0362 1.0423
lbm 1.2668 1.0002 1.1264
leela 2.0863 1.0003 1.0007
mcf 2.1056 1.1127 1.1874
roms 2.1474 0.9997 1.1354
wrf 1.6129 1.0343 1.0424
x264 1.4440 1.0014 1.0016
xz 1.3315 1.0031 1.0032
Geomean 1.8956 1.0213 1.0539

for 50 million instructions (out of 500 million instructions simulated in
our experiments). Fig. 11 shows the geometric mean performance losses
for the SPEC 2017 benchmarks. As can be seen, if random evictions
are applied only 10% of the applications’ execution, we only see a
geometric mean performance loss of 5% at 10% random eviction rate
at L1-D level (not 62% if the random eviction are turned on during the
entire execution). Even when false misses are introduced for half of the
application execution, the geometric mean performance loss is 26% at
10% random eviction rate. We feel that security protection should be
used only when needed — to protect critical segments of applications
which minimizes performance losses.

4.5. Combined analysis

In the final set of experiments, we used both Guard Cache (i.e., false
hits) and random evictions (i.e., false misses). The performance losses are
similar to those when only false misses are in place. The performance
impact of Guard Cache was negligible. The results are very similar to
those shown in Fig. 9.

4.6. Evaluation of SafeLoadOnMiss technique

Table 5 shows the normalized execution times with respect to
UnsafeBaseline (that does not rely on any mitigation techniques) for (i)
NoSpeculation, whereby speculative execution is disabled, (ii) SafeLoad-
OnMiss using LRU replacement policy and (iii) SafeLoadOnMiss with
random replacement policy. TreePLRU replacement (default in Gem5
[29] Ruby) policy is used in all cache levels in UnsafeBaseline, NoSpec-
ulation and SafeLoadOnMiss modes. Here, the Safe Mode is on for the
entire execution duration of applications.

As expected, completely restricting the speculation results in high-
est performance loss: 89.6% on average. It should be observed that
12

fotonik3d has a very low branch misprediction rate (see Table 4)
leading to significant performance loss when speculation is disabled.
On the other hand, mcf has high branch misprediction rates and thus
preventing speculation leads to lower performance losses. When the
cache MPKI is low but branch MPKI is high, the performance loss
will be lower. Disabling speculation completely does provide protection
against all speculative attacks but it cannot be justified because of the
excessive performance losses.

Table 5 also shows that delaying speculative load misses
(SafeLoadOnMiss) with and without the random replacement policy
results in very small performance penalties of 5.4% and 2.1% respec-
tively. Even though the use of random replacement policy increased
the performance loss, it will improve the attack coverage by mitigating
threats such as Speculative Interference attack [19] (as detailed in
Section 3.2.4). Although fotonik3d and exchange2 have lower mispre-
diction rates, they also have lower L1-D MPKI. This means fewer
delays for load instructions in speculative execution, leading to almost
negligible performance loss. The benchmark bwaves has no significant
loss due to extremely low branch misses (Branch MPKI = 0.00). On
he other hand, higher branch MPKI and cache miss MPKI values
ead to higher performance losses for mcf and gcc. Even though lbm
as the highest L1-D MPKI value, its low branch MPKI was able to
alance out the performance penalty by utilizing the instruction level
arallelism. In summary, SafeLoadOnMiss performs poorly when both
ranch mispredictions and L1-D misses are high and having a lower
alue for either one of the miss parameters seems to cancel out the
erformance effect. Adding the random replacement policy on top of
afeLoadOnMiss showed an extra slowdown of 3.3% (5.4%-2.1%) which
ligns with the performance loss added to the UnsafeBaseline (3.4%, see
able 2).

.7. Switching between safe and unsafe modes

Launching attacks while running a real application such as SPEC-
peed benchmark is very difficult and may require modifications to
enchmark codes (which is not recommended). Finding a real world
orking Spectre attack example capable of doing actual damage is out-
f-scope for this research. To emulate the attack environment (either to
rotect critical code sections or when an attack is detected), we enter
he SafeLoadOnMiss mode for 10%, 20%, and 30% of the time and
witch back to UnsafeBaseline the rest of the time. To avoid catching

specific section of the workload where the load miss activity or
he branch activity is low, we distribute the partial SafeLoadOnMiss
odes (10%, 20% and 30%) uniformly across the entire execution of an

pplication. We used 1000 equi-width chunks for each partial SafeLoad-
nMiss mode (enter and exit SafeLoadOnMiss mode 1000 times) and
niformly distributes them across the 500 million instructions of the
imulation window. We switch to the random replacement policy when-
ver we are in the SafeLoadOnMiss mode. Fig. 12 shows (on Y-axis) the
ercentage of performance loss due to the SafeLoadOnMiss technique
hen compared to an unprotected baseline system if the protection is
n only for short periods of time (10%, 20%, 30% of the execution time
f an application) as well as when the protection is on during the entire
xecution of an application (100%). As can be seen from the figure, the
verage performance degradations when the protection is on for only
0%, 20%, and 30% of execution of an application are 1.2%, 1.9%,
nd 2.5% respectively. As shown in Table 5, we see a 5.39% loss if the
rotection is on all the time (see Fig. 13).

.8. Hardware overhead

As mentioned in Section 3.2.1, the only additional buffer structure
equired in our design is the Safe Queue. Each Safe Queue entry contains
he address of the load and the corresponding sequence number. If we
ssume the address is 64 bits and the sequence number and additional
lags (non-speculative flag, Section 3) require 16 bits, each entry is

Journal of Systems Architecture 150 (2024) 103107F. Mosquera et al.
Fig. 12. Percentage of performance loss using SafeLoadOnMiss mitigation technique for specspeed 2017 benchmarks, normalized to unprotected (or unsafe) baseline. the data is
for the cases when the SafeLoadOnMiss scheme is active with random replacement policy for 10%, 20%, 30%, and 100% of the total execution time.
Fig. 13. On-Demand security protection. (a) The normal unsafe mode where the spectre attack is successful. (b) The Safe Mode is on throughout the execution and the attack is
unsuccessful. (c) The Safe Mode is entered and exited at random intervals: Attack is prevented in Safe Mode but the attack is successful when the Safe Mode is exited.
10 bytes long.6 In our experiments, we observed that the maximum
occupancy of the Safe Queue is 13 (gcc). The size of the Safe Queue
should be adjusted according to the issue width of the core pipeline and
the number of requests that can be served in parallel by the cache port.
Thus, for our experimented design a minimum of 16 entries are enough
for the Safe Queue. This results in an additional buffer requirement of
160 bytes, compared to Ghostminion which uses 2 KiB storage [20],
CleanupSpec which uses 1 KiB [17]. Thus, the additional cost of 160B
per core is significantly lower and the control logic involved in our
design is easy to implement. Likewise, as shown in Section 4.3, 1 KiB
to 2 KiB Guard Cache is sufficient to prevent many cache timing based
attacks.

5. Related work

The research community has been very active in the area of hard-
ware security as can be seen by numerous publications in recent
premier architecture and systems conferences. Thus it is not possi-
ble to review all such works. We have already described some key
publications that are very closely related to our research. We will
describe some additional works that are useful in understanding the
types of attacks, detecting attacks, hardware and software mitigation
techniques.

6 Sequence number only needs to be wrapped around after twice the size of
ROB (similar to timestamp in [20]). Thus, in this proposal 9 bits are enough
to represent the sequence number (192*2 < 2**9).
13
5.1. Types of attacks based on timing cache accesses

Based on the access latency, an attacker can deduce whether or not
a cache line is in the cache through two methods to set up the cache,
which in turn may reveal some information about the accesses made
by a victim [3,4,22,23]. Some commonly referenced attacks include:

• Evict & Time attack [3], in which the attacker evicts a cache line
triggering a miss when the victim accesses the data item.

• Prime & Probe [3,4] where the attacker ‘‘primes’’ by occupying
all cache lines. Later the attacker probes to see which cache lines
caused misses, inferring the lines accessed by the victim.

• Two variations of Flush & Reload [5] which are Evict & Reload
[22] and Flush & Flush [23]

5.2. Mitigating cache side-channel attacks

In general, the solutions to protect against timing attacks are im-
plemented to avoid sharing of caches so that attacker cannot evict the
victim’s cache lines and time accesses. Another approach obfuscates
how the addresses are mapped to cache sets, consequently for the
attacker is more difficult to determine any portion of the addresses
accessed by the victim. In Partition Locked Cache (PLcache) [34], each
cache line is augmented with an ID field and a lock bit L. Dynami-
cally Allocated Way Guard (DAWG) [11] is a mechanism to secure
way partitioning of set associative caches. DAWG isolates hits, misses,
and metadata updates across protection domains. There are several
proposals for randomizing mapping addresses to cache sets, including
Random Permutation Cache (RPcache) [14,34] and NewCache [35],

Journal of Systems Architecture 150 (2024) 103107F. Mosquera et al.

5

i
R
u
w
b
B
l
J
2
c
S
i
I
s
p
a
f

v
I
i
a
(

‘
u
s
i
i
T
p
i
s

l
t
t
p
n
m
a

i

6

O
a
o
M
t
a
s
o
w
p
P
t
m

n

d
s
p
f
t
a
I
c
t
1
1

m
G
m
G

ScatterCache [15] and CHASM [36]. Ceaser [37] is another architecture
based on randomized mappings, which employs a Low-Latency Block-
Cipher (LLBC) to translate the physical line-address into an encrypted
line-address, and access the cache with this encrypted line-address. In
another approach to obfuscate cache accesses, GhostThread [38] uses
a thread to interfere with both victim and attacker cache accesses.

5.3. Attacks based on speculation

The attacks that rely on speculative execution (by predicting con-
ditional branches and/or indirect branches) are currently addressed
under the umbrella of Spectre and its variants. They include:

• Spectre Variant 1 (CVE-2017-5753) [9,25,39,40]
• Spectre Variant 2 (CVE-2017-5715) or Branch target injection [9,

25,39,40]
• Spectre Variant 3 (Meltdown v3 CVE-2017-5754) [25] (CVE-

2017-5754) [25], also known as Rogue Data Cache Load
• SpectreRewind [41] and Speculative Interference [19]

.4. Mitigating speculative attacks

Software Based. Return trampoline or ‘‘Retpolines’’ [40,42] isolates
ndirect branches from speculative execution. It uses properties of the
eturn Stack Buffer (RSB) as a prediction structure to control spec-
lation. Indirect Branch Control (IBC) is an architectural mechanism
hich has been added to the x86 ISA to help software control of
ranch prediction of indirect branches. It consists of 3 features: Indirect
ranch Prediction Barrier (IBPB), Indirect Branch Restricted Specu-

ation (IBRS) and Single Thread Indirect Branch Predictors (STIBP).
umpSwitches [43] is a software protection against Spectre Variant
with less overhead than retpolines solution. It transforms indirect

alls into conditional direct calls. Conditional Speculation [44] and
pectreGuard [45] use software hints to disable speculation on sensitive
nstructions. New Operating Systems have added Kernel Page Table
solation (KPTI) [46] to fix meltdown attacks, where the kernel memory
pace is separated from user space and uses a separate page table to
revent speculative read of kernel memory from user-space; however
t the cost of an additional page table switch during every transition
rom user space to kernel-space and back, on every syscall instruction.
Hardware Based. There are several approaches that rely on delaying

isibility of speculative accesses, including Selective Delay [18] and
nvisiSpec [16]. InvisiSpec [16] uses speculative buffers for execut-
ng instructions in speculative mode, including speculative memory
ccesses. Upon a correct prediction, the memory accesses are reissued
hence known as ‘‘redo’’ technique).

A different technique, CleanupSpec [17] can be viewed as an
‘Undo’’ approach: it evicts speculatively fetched data from caches (and
ses random replacement to obfuscate attacks that rely on metadata
uch as LRU information). Revice [30] is similar to CleanupSpec [17]:
t allows speculative caching of data but hides the operation until it
s safe, in part by introducing access jitters to conceal access timing.
hese techniques are fundamentally based on exposing or making a
ermanent cache state only after the Visibility Point (VP), when the
nstructions cannot be squashed by prior operations (that is, when the
peculation is correct).

In [18], the authors propose three techniques to mitigate Spectre-
ike attacks. They explore two versions of delaying speculative loads
hat miss in the cache and a third technique that uses value predic-
ion for load misses. Delaying load misses is similar to our technique
roposed here. However, our implementation is different and our tech-
ique can be turned on when needed. We also propose random replace-
ent policies for cache memories to make Speculative Interference

ttacks [19] more difficult.
Ghostminion [20] uses a separate cache like structure (Ghostmin-

on) to hide speculative accesses and associates time stamps with the
14
accesses to assure both non-interference of speculative instructions with
(earlier) non-speculative instructions and also visibility of (metadata)
later accesses to earlier access, which can occur with out-of-order
speculative executions. While this is a potentially complete solution
against Speculative Interference attacks [19], it may not be easy to use
for on demand protection.

. Conclusion

In this paper, we presented the SecurityCloak framework — an
n Demand protection against side-channel and speculative execution
ttacks. Systems can be protected by entering Safe Mode and turning
n protection or exiting Safe Mode to resume normal execution. Safe
ode can be entered when an attack is detected or when a user wants

o protect critical code sections. Any known technique to prevent (or
t least mitigate attacks) can be used within our framework. However,
ince the main goal is the ability to dynamically turning on and turning
ff protection, a mitigation technique should incur minimal overheads
hen entering or exiting Safe Mode. In this paper, we rely on very sim-
le techniques to protect against side-channel attacks such as Prime &
robe, Flush & Reload, Evict & Time, as well as Spectre and its variants
hat capitalize vulnerabilities resulting from speculative execution in
odern computer architectures.

To mitigate cache timing attacks, we proposed and evaluated tech-
iques to crate false access times by introducing false hits and false
misses. We use a small Guard Cache (a fully associative cache with very
similar access latencies as the primary data caches) to cause false hits.
We use Guard Cache as both a ‘‘Victim Cache’’ and a ‘‘Miss Cache’’. We
collected performance data using different Guard Cache sizes; 1 KiB
to 2 KiB at L1-D and 2 KiB–4 KiB at L2 cache levels. We varied the
percentage of the time the Guard Cache is activated as a Miss Cache
and as a Victim Cache. We have seen negligible impact on performance,
but we have shown that the use of a Guard Cache can prevent several
side-channel attacks, particularly those that rely on Flush & Reload or
Evict & Reload attacks.

Additionally, we randomly evict data from the primary cache, po-
tentially causing a cache miss when a hit is expected. We have collected
performance data by varying the frequency of random evictions. As can
be expected, higher eviction frequencies lead to higher performance
losses, but potentially greater obfuscation of cache timing. Our tech-
niques incur very minimal hardware (small amounts of Guard Caches)
and minimal complexity to vary the frequency of random evictions.
Random evictions can prevent side-channels that rely on Prime & Probe
attacks.

False hits and false misses can prevent or at least mitigate specula-
tive attacks such as Specture since Spectre attacks still rely on either
Prime & Probe or Flush & Reload techniques. But we also propose
an additional technique to mitigate attacks that rely on speculative
loads to acquire data illegally. Our technique (labeled SafeLoadOnMiss)
elays all speculative load accesses that miss in L1-D cache until the
peculation is resolved. Our technique results in 2.1% (geometric mean)
erformance loss for SPEC 2017 benchmarks when the protection is on
or the entire execution of benchmarks. But, the loss is only 0.2% if
he protection is on for 10% of execution (assuming that an attack is
ctive only for 10% of the execution time). To mitigate Speculation
nterference attacks [19], we use random replacement policies at all
ache levels when in Safe Mode. This causes a small amount of addi-
ional performance loss (5.3% geometric mean when protection is on
00% of the time and about 1.2% when the protection is on for only
0% of time).

Techniques proposed in this paper require minimal changes to cache
emories and an insignificant increase in hardware. We use very small
uard Caches (1 KiB–2 KiB at L1 or 2 KiB–4 KiB at L2) requiring very
inimal additional hardware. As we have shown, even these small
uard Caches can cause sufficient difficulty to side-channel attacks. The

Journal of Systems Architecture 150 (2024) 103107F. Mosquera et al.

a
f
d
s
c
d
a
c
i
n

d
t

C

a
r
t
W
s
V
&
V
V
e

D

c
i

D

A

g
T
p
e
o

R

hardware needed for random evictions is also minimal. The SafeLoad-
OnMiss requires very small (160 Bytes) additional storage for the
SafeQueue and very minimal hardware for managing the SafeQueue.

To benefit from On Demand protection, it is necessary to implement
n attack detection method. The detection method should be efficient
or real-time detection so that the system can enter Safe Mode without
elays and prevent the attack as quickly as possible. A detection method
hould also result in highly accurate detection of attacks — false hits
an cause higher performance losses. In this paper, we use a simple
etection technique based on our observation that most side-channel
ttacks based on speculative executions use an excessive number of
ache flushes. We conservatively enter Safe Mode when a cache flush
nstruction is executed. After an interval, based on our observations, if
o additional flushes are detected, we exit Safe Mode.

We plan to extend the SecurityCloak framework by exploring ad-
itional security prevention techniques as well as additional detection
echniques.

RediT authorship contribution statement

Fernando Mosquera: Conceptualization, Data curation, Formal
nalysis, Investigation, Software, Writing – original draft, Writing –
eview & editing. Ashen Ekanayake: Conceptualization, Data cura-
ion, Formal analysis, Investigation, Software, Writing – original draft,

riting – review & editing. William Hua: Supervision, Validation, Vi-
ualization. Krishna Kavi: Conceptualization, Resources, Supervision,
alidation, Visualization, Writing – original draft, Writing – review
editing. Gayatri Mehta: Conceptualization, Supervision, Validation,

isualization, Writing – original draft. Lizy John: Conceptualization,
alidation, Visualization, Writing – original draft, Writing – review &
diting.

eclaration of competing interest

The authors declare that they have no known competing finan-
ial interests or personal relationships that could have appeared to
nfluence the work reported in this paper.

ata availability

Data will be made available on request.

cknowledgments

This research was supported in part by National Science Foundation
rants #1763848 and #1828105. The authors would also like to thank
ony Chen of UNT Texas Academy of Mathematics and Science (TAMS)
rogram for collecting some of the data presented here and acknowl-
dge the feedback received from Brandon Potter and Mike Ignatowski
f AMD.

eferences

[1] D.J. Bernstein, Cache-timing attacks on AES, 2005.
[2] N. Lawson, Side-channel attacks on cryptographic software, IEEE Secur. Priv. 7

(6) (2009) 65–68.
[3] D.A. Osvik, A. Shamir, E. Tromer, Cache attacks and countermeasures: the case

of AES, in: Cryptographers’ Track At the RSA Conference, Springer, 2006, pp.
1–20.

[4] F. Liu, Y. Yarom, Q. Ge, G. Heiser, R.B. Lee, Last-level cache side-channel attacks
are practical, in: 2015 IEEE Symposium on Security and Privacy, IEEE, 2015, pp.
605–622.

[5] Y. Yarom, K. Falkner, FlUSH+ RELOAD: A high resolution, low noise, L3 cache
side-channel attack, in: 23rd {USENIX} Security Symposium ({USENIX} Security
14), 2014, pp. 719–732.

[6] J.L. Hennessy, D.A. Patterson, Computer Architecture: A Quantitative Approach,
Elsevier, 2011.

[7] K. Cook, Kernel address space layout randomization, in: Linux Security Summit,
15

2013.
[8] M. Lipp, M. Schwarz, D. Gruss, T. Prescher, W. Haas, S. Mangard, P. Kocher,
D. Genkin, Y. Yarom, M. Hamburg, Meltdown, 2018, arXiv preprint arXiv:
1801.01207.

[9] P. Kocher, J. Horn, A. Fogh, D. Genkin, D. Gruss, W. Haas, M. Hamburg, M. Lipp,
S. Mangard, T. Prescher, et al., Spectre attacks: Exploiting speculative execution,
in: 2019 IEEE Symposium on Security and Privacy, SP, IEEE, 2019, pp. 1–19.

[10] D.T. Meyer, W.J. Bolosky, A study of practical deduplication, ACM Trans. Storage
(ToS) 7 (4) (2012) 1–20.

[11] V. Kiriansky, I. Lebedev, S. Amarasinghe, S. Devadas, J. Emer, DAWG: A defense
against cache timing attacks in speculative execution processors, in: 2018 51st
Annual IEEE/ACM International Symposium on Microarchitecture, MICRO, IEEE,
2018, pp. 974–987.

[12] Z. He, R.B. Lee, How secure is your cache against side-channel attacks? in:
Proceedings of the 50th Annual IEEE/ACM International Symposium on
Microarchitecture, 2017, pp. 341–353.

[13] R. Spreitzer, V. Moonsamy, T. Korak, S. Mangard, Systematic classification of
side-channel attacks: A case study for mobile devices, IEEE Commun. Surv. Tutor.
20 (1) (2017) 465–488.

[14] Z. Wang, R.B. Lee, New cache designs for thwarting software cache-based side
channel attacks, in: Proceedings of the 34th Annual International Symposium on
Computer Architecture, 2007, pp. 494–505.

[15] M. Werner, T. Unterluggauer, L. Giner, M. Schwarz, D. Gruss, S. Mangard,
Scattercache: Thwarting cache attacks via cache set randomization, in: 28th
{USENIX} Security Symposium ({USENIX} Security 19), 2019, pp. 675–692.

[16] M. Yan, J. Choi, D. Skarlatos, A. Morrison, C.W. Fletcher, J. Torrellas, Invisispec:
Making speculative execution invisible in the cache hierarchy (corrigendum),
in: Proceedings of the 52nd Annual IEEE/ACM International Symposium on
Microarchitecture, 2019, pp. 1076–1076.

[17] G. Saileshwar, M.K. Qureshi, Cleanupspec: An‘‘ undo’’ approach to safe specu-
lation, in: Proceedings of the 52nd Annual IEEE/ACM International Symposium
on Microarchitecture, 2019, pp. 73–86.

[18] C. Sakalis, S. Kaxiras, A. Ros, A. Jimborean, M. Själander, Efficient invisible
speculative execution through selective delay and value prediction, in: 2019
ACM/IEEE 46th Annual International Symposium on Computer Architecture,
ISCA, IEEE, 2019, pp. 723–735.

[19] M. Behnia, P. Sahu, R. Paccagnella, J. Yu, Z.N. Zhao, X. Zou, T. Unterluggauer, J.
Torrellas, C. Rozas, A. Morrison, et al., Speculative interference attacks: Breaking
invisible speculation schemes, in: Proceedings of the 26th ACM International
Conference on Architectural Support for Programming Languages and Operating
Systems, 2021, pp. 1046–1060.

[20] S. Ainsworth, GhostMinion: A strictness-ordered cache system for spectre mit-
igation, in: MICRO-54: 54th Annual IEEE/ACM International Symposium on
Microarchitecture, 2021, pp. 592–606.

[21] N.P. Jouppi, Improving direct-mapped cache performance by the addition of
a small fully-associative cache and prefetch buffers, SIGARCH Comput. Archit.
News 18 (2SI) (1990) 364–373, [Online]. Available: https://doi.org/10.1145/
325096.325162.

[22] D. Gruss, R. Spreitzer, S. Mangard, Cache template attacks: Automating attacks
on inclusive last-level caches, in: 24th {USENIX} Security Symposium ({USENIX}
Security 15), 2015, pp. 897–912.

[23] D. Gruss, C. Maurice, K. Wagner, S. Mangard, Flush+ Flush: a fast and
stealthy cache attack, in: International Conference on Detection of Intrusions
and Malware, and Vulnerability Assessment, Springer, 2016, pp. 279–299.

[24] R. Mcilroy, J. Sevcik, T. Tebbi, B.L. Titzer, T. Verwaest, Spectre is here to stay:
An analysis of side-channels and speculative execution, 2019, arXiv preprint
arXiv:1902.05178.

[25] Z. He, G. Hu, R. Lee, New models for understanding and reasoning about
speculative execution attacks, in: 2021 IEEE International Symposium on
High-Performance Computer Architecture, HPCA, IEEE, 2021, pp. 40–53.

[26] C. Pierce, M. Spisak, K. Fitch, Capturing 0day exploits with perfectly placed
hardware traps, in: Proc. BlackHat Conf, Vol. 7, 2016.

[27] H. Wang, H. Sayadi, S. Rafatirad, A. Sasan, H. Homayoun, Scarf: Detecting side-
channel attacks at real-time using low-level hardware features, in: 2020 IEEE
26th International Symposium on on-Line Testing and Robust System Design,
IOLTS, IEEE, 2020, pp. 1–6.

[28] C. Li, J.-L. Gaudiot, Online detection of spectre attacks using microarchitectural
traces from performance counters, in: 2018 30th International Symposium on
Computer Architecture and High Performance Computing, SBAC-PAD, IEEE,
2018, pp. 25–28.

[29] N. Binkert, B. Beckmann, G. Black, S.K. Reinhardt, A. Saidi, A. Basu, J. Hestness,
D.R. Hower, T. Krishna, S. Sardashti, R. Sen, K. Sewell, M. Shoaib, N. Vaish, M.D.
Hill, D.A. Wood, The Gem5 simulator, SIGARCH Comput. Archit. News 39 (2)
(2011) 1–7, [Online]. Available: https://doi.org/10.1145/2024716.2024718.

[30] S. Kim, F. Mahmud, J. Huang, P. Majumder, N. Christou, A. Muzahid, C.-C. Tsai,
E.J. Kim, Revice: Reusing victim cache to prevent speculative cache leakage, in:
2020 IEEE Secure Development, SecDev, IEEE, 2020, pp. 96–107.

[31] G.B. Bell, M.H. Lipasti, Deconstructing commit, in: Proceedings of the 2004
IEEE International Symposium on Performance Analysis of Systems and Software,
ISPASS ’04, IEEE Computer Society, USA, 2004, pp. 68–77.

http://refhub.elsevier.com/S1383-7621(24)00044-4/sb1
http://refhub.elsevier.com/S1383-7621(24)00044-4/sb2
http://refhub.elsevier.com/S1383-7621(24)00044-4/sb2
http://refhub.elsevier.com/S1383-7621(24)00044-4/sb2
http://refhub.elsevier.com/S1383-7621(24)00044-4/sb3
http://refhub.elsevier.com/S1383-7621(24)00044-4/sb3
http://refhub.elsevier.com/S1383-7621(24)00044-4/sb3
http://refhub.elsevier.com/S1383-7621(24)00044-4/sb3
http://refhub.elsevier.com/S1383-7621(24)00044-4/sb3
http://refhub.elsevier.com/S1383-7621(24)00044-4/sb4
http://refhub.elsevier.com/S1383-7621(24)00044-4/sb4
http://refhub.elsevier.com/S1383-7621(24)00044-4/sb4
http://refhub.elsevier.com/S1383-7621(24)00044-4/sb4
http://refhub.elsevier.com/S1383-7621(24)00044-4/sb4
http://refhub.elsevier.com/S1383-7621(24)00044-4/sb5
http://refhub.elsevier.com/S1383-7621(24)00044-4/sb5
http://refhub.elsevier.com/S1383-7621(24)00044-4/sb5
http://refhub.elsevier.com/S1383-7621(24)00044-4/sb5
http://refhub.elsevier.com/S1383-7621(24)00044-4/sb5
http://refhub.elsevier.com/S1383-7621(24)00044-4/sb6
http://refhub.elsevier.com/S1383-7621(24)00044-4/sb6
http://refhub.elsevier.com/S1383-7621(24)00044-4/sb6
http://refhub.elsevier.com/S1383-7621(24)00044-4/sb7
http://refhub.elsevier.com/S1383-7621(24)00044-4/sb7
http://refhub.elsevier.com/S1383-7621(24)00044-4/sb7
http://arxiv.org/abs/1801.01207
http://arxiv.org/abs/1801.01207
http://arxiv.org/abs/1801.01207
http://refhub.elsevier.com/S1383-7621(24)00044-4/sb9
http://refhub.elsevier.com/S1383-7621(24)00044-4/sb9
http://refhub.elsevier.com/S1383-7621(24)00044-4/sb9
http://refhub.elsevier.com/S1383-7621(24)00044-4/sb9
http://refhub.elsevier.com/S1383-7621(24)00044-4/sb9
http://refhub.elsevier.com/S1383-7621(24)00044-4/sb10
http://refhub.elsevier.com/S1383-7621(24)00044-4/sb10
http://refhub.elsevier.com/S1383-7621(24)00044-4/sb10
http://refhub.elsevier.com/S1383-7621(24)00044-4/sb11
http://refhub.elsevier.com/S1383-7621(24)00044-4/sb11
http://refhub.elsevier.com/S1383-7621(24)00044-4/sb11
http://refhub.elsevier.com/S1383-7621(24)00044-4/sb11
http://refhub.elsevier.com/S1383-7621(24)00044-4/sb11
http://refhub.elsevier.com/S1383-7621(24)00044-4/sb11
http://refhub.elsevier.com/S1383-7621(24)00044-4/sb11
http://refhub.elsevier.com/S1383-7621(24)00044-4/sb12
http://refhub.elsevier.com/S1383-7621(24)00044-4/sb12
http://refhub.elsevier.com/S1383-7621(24)00044-4/sb12
http://refhub.elsevier.com/S1383-7621(24)00044-4/sb12
http://refhub.elsevier.com/S1383-7621(24)00044-4/sb12
http://refhub.elsevier.com/S1383-7621(24)00044-4/sb13
http://refhub.elsevier.com/S1383-7621(24)00044-4/sb13
http://refhub.elsevier.com/S1383-7621(24)00044-4/sb13
http://refhub.elsevier.com/S1383-7621(24)00044-4/sb13
http://refhub.elsevier.com/S1383-7621(24)00044-4/sb13
http://refhub.elsevier.com/S1383-7621(24)00044-4/sb14
http://refhub.elsevier.com/S1383-7621(24)00044-4/sb14
http://refhub.elsevier.com/S1383-7621(24)00044-4/sb14
http://refhub.elsevier.com/S1383-7621(24)00044-4/sb14
http://refhub.elsevier.com/S1383-7621(24)00044-4/sb14
http://refhub.elsevier.com/S1383-7621(24)00044-4/sb15
http://refhub.elsevier.com/S1383-7621(24)00044-4/sb15
http://refhub.elsevier.com/S1383-7621(24)00044-4/sb15
http://refhub.elsevier.com/S1383-7621(24)00044-4/sb15
http://refhub.elsevier.com/S1383-7621(24)00044-4/sb15
http://refhub.elsevier.com/S1383-7621(24)00044-4/sb16
http://refhub.elsevier.com/S1383-7621(24)00044-4/sb16
http://refhub.elsevier.com/S1383-7621(24)00044-4/sb16
http://refhub.elsevier.com/S1383-7621(24)00044-4/sb16
http://refhub.elsevier.com/S1383-7621(24)00044-4/sb16
http://refhub.elsevier.com/S1383-7621(24)00044-4/sb16
http://refhub.elsevier.com/S1383-7621(24)00044-4/sb16
http://refhub.elsevier.com/S1383-7621(24)00044-4/sb17
http://refhub.elsevier.com/S1383-7621(24)00044-4/sb17
http://refhub.elsevier.com/S1383-7621(24)00044-4/sb17
http://refhub.elsevier.com/S1383-7621(24)00044-4/sb17
http://refhub.elsevier.com/S1383-7621(24)00044-4/sb17
http://refhub.elsevier.com/S1383-7621(24)00044-4/sb18
http://refhub.elsevier.com/S1383-7621(24)00044-4/sb18
http://refhub.elsevier.com/S1383-7621(24)00044-4/sb18
http://refhub.elsevier.com/S1383-7621(24)00044-4/sb18
http://refhub.elsevier.com/S1383-7621(24)00044-4/sb18
http://refhub.elsevier.com/S1383-7621(24)00044-4/sb18
http://refhub.elsevier.com/S1383-7621(24)00044-4/sb18
http://refhub.elsevier.com/S1383-7621(24)00044-4/sb19
http://refhub.elsevier.com/S1383-7621(24)00044-4/sb19
http://refhub.elsevier.com/S1383-7621(24)00044-4/sb19
http://refhub.elsevier.com/S1383-7621(24)00044-4/sb19
http://refhub.elsevier.com/S1383-7621(24)00044-4/sb19
http://refhub.elsevier.com/S1383-7621(24)00044-4/sb19
http://refhub.elsevier.com/S1383-7621(24)00044-4/sb19
http://refhub.elsevier.com/S1383-7621(24)00044-4/sb19
http://refhub.elsevier.com/S1383-7621(24)00044-4/sb19
http://refhub.elsevier.com/S1383-7621(24)00044-4/sb20
http://refhub.elsevier.com/S1383-7621(24)00044-4/sb20
http://refhub.elsevier.com/S1383-7621(24)00044-4/sb20
http://refhub.elsevier.com/S1383-7621(24)00044-4/sb20
http://refhub.elsevier.com/S1383-7621(24)00044-4/sb20
https://doi.org/10.1145/325096.325162
https://doi.org/10.1145/325096.325162
https://doi.org/10.1145/325096.325162
http://refhub.elsevier.com/S1383-7621(24)00044-4/sb22
http://refhub.elsevier.com/S1383-7621(24)00044-4/sb22
http://refhub.elsevier.com/S1383-7621(24)00044-4/sb22
http://refhub.elsevier.com/S1383-7621(24)00044-4/sb22
http://refhub.elsevier.com/S1383-7621(24)00044-4/sb22
http://refhub.elsevier.com/S1383-7621(24)00044-4/sb23
http://refhub.elsevier.com/S1383-7621(24)00044-4/sb23
http://refhub.elsevier.com/S1383-7621(24)00044-4/sb23
http://refhub.elsevier.com/S1383-7621(24)00044-4/sb23
http://refhub.elsevier.com/S1383-7621(24)00044-4/sb23
http://arxiv.org/abs/1902.05178
http://refhub.elsevier.com/S1383-7621(24)00044-4/sb25
http://refhub.elsevier.com/S1383-7621(24)00044-4/sb25
http://refhub.elsevier.com/S1383-7621(24)00044-4/sb25
http://refhub.elsevier.com/S1383-7621(24)00044-4/sb25
http://refhub.elsevier.com/S1383-7621(24)00044-4/sb25
http://refhub.elsevier.com/S1383-7621(24)00044-4/sb26
http://refhub.elsevier.com/S1383-7621(24)00044-4/sb26
http://refhub.elsevier.com/S1383-7621(24)00044-4/sb26
http://refhub.elsevier.com/S1383-7621(24)00044-4/sb27
http://refhub.elsevier.com/S1383-7621(24)00044-4/sb27
http://refhub.elsevier.com/S1383-7621(24)00044-4/sb27
http://refhub.elsevier.com/S1383-7621(24)00044-4/sb27
http://refhub.elsevier.com/S1383-7621(24)00044-4/sb27
http://refhub.elsevier.com/S1383-7621(24)00044-4/sb27
http://refhub.elsevier.com/S1383-7621(24)00044-4/sb27
http://refhub.elsevier.com/S1383-7621(24)00044-4/sb28
http://refhub.elsevier.com/S1383-7621(24)00044-4/sb28
http://refhub.elsevier.com/S1383-7621(24)00044-4/sb28
http://refhub.elsevier.com/S1383-7621(24)00044-4/sb28
http://refhub.elsevier.com/S1383-7621(24)00044-4/sb28
http://refhub.elsevier.com/S1383-7621(24)00044-4/sb28
http://refhub.elsevier.com/S1383-7621(24)00044-4/sb28
https://doi.org/10.1145/2024716.2024718
http://refhub.elsevier.com/S1383-7621(24)00044-4/sb30
http://refhub.elsevier.com/S1383-7621(24)00044-4/sb30
http://refhub.elsevier.com/S1383-7621(24)00044-4/sb30
http://refhub.elsevier.com/S1383-7621(24)00044-4/sb30
http://refhub.elsevier.com/S1383-7621(24)00044-4/sb30
http://refhub.elsevier.com/S1383-7621(24)00044-4/sb31
http://refhub.elsevier.com/S1383-7621(24)00044-4/sb31
http://refhub.elsevier.com/S1383-7621(24)00044-4/sb31
http://refhub.elsevier.com/S1383-7621(24)00044-4/sb31
http://refhub.elsevier.com/S1383-7621(24)00044-4/sb31

Journal of Systems Architecture 150 (2024) 103107F. Mosquera et al.
[32] G. Saileshwar, C.W. Fletcher, M. Qureshi, Streamline: A fast, flushless cache
covert-channel attack by enabling asynchronous collusion, in: Proceedings of the
26th ACM International Conference on Architectural Support for Programming
Languages and Operating Systems, in: ASPLOS 2021, Association for Computing
Machinery, New York, NY, USA, 2021, pp. 1077–1090, [Online]. Available:
https://doi.org/10.1145/3445814.3446742.

[33] K. So, R. Rechtschaffen, Cache operations by MRU change, IEEE Trans. Comput.
37 (6) (1988) 700–709.

[34] J. Kong, O. Aciicmez, J.-P. Seifert, H. Zhou, Deconstructing new cache designs
for thwarting software cache-based side channel attacks, in: Proceedings of the
2nd ACM Workshop on Computer Security Architectures, 2008, pp. 25–34.

[35] F. Liu, H. Wu, K. Mai, R.B. Lee, Newcache: Secure cache architecture thwarting
cache side-channel attacks, IEEE Micro. 36 (5) (2016) 8–16.

[36] F. Mosquera, N. Gulur, K. Kavi, G. Mehta, H. Sun, CHASM: Security evaluation
of cache mapping schemes, in: International Conference on Embedded Computer
Systems, Springer, 2020, pp. 245–261.

[37] M.K. Qureshi, CEASER: Mitigating conflict-based cache attacks via encrypted-
address and remapping, in: 2018 51st Annual IEEE/ACM International
Symposium on Microarchitecture, MICRO, IEEE, 2018, pp. 775–787.

[38] R. Brotzman, D. Zhang, M. Kandemir, G. Tan, Ghost thread: Effective user-space
cache side channel protection, in: Proceedings of the Eleventh ACM Conference
on Data and Application Security and Privacy, 2021, pp. 233–244.

[39] N. Abu-Ghazaleh, D. Ponomarev, D. Evtyushkin, How the spectre and meltdown
hacks really worked, IEEE Spectr. 56 (3) (2019) 42–49.
16
[40] M. Löw, Overview of meltdown and spectre patches and their impacts, Adv.
Microkernel Oper. Syst. (2018) 53.

[41] J. Fustos, M. Bechtel, H. Yun, SpectreRewind: Leaking secrets to past instructions,
in: Proceedings of the 4th ACM Workshop on Attacks and Solutions in Hardware
Security, 2020, pp. 117–126.

[42] M.F.A. Kadir, J.K. Wong, F. Ab Wahab, A.F.A.A. Bharun, M.A. Mohamed,
A.H. Zakaria, Retpoline technique for mitigating spectre attack, in: 2019 6th
International Conference on Electrical and Electronics Engineering, ICEEE, IEEE,
2019, pp. 96–101.

[43] N. Amit, F. Jacobs, M. Wei, Jumpswitches: restoring the performance of indirect
branches in the era of spectre, in: Proceedings of the 2019 USENIX Conference
on Usenix Annual Technical Conference, 2019, pp. 285–299.

[44] P. Li, L. Zhao, R. Hou, L. Zhang, D. Meng, Conditional speculation: An effective
approach to safeguard out-of-order execution against spectre attacks, in: 2019
IEEE International Symposium on High Performance Computer Architecture,
HPCA, IEEE, 2019, pp. 264–276.

[45] J. Fustos, F. Farshchi, H. Yun, Spectreguard: An efficient data-centric defense
mechanism against spectre attacks, in: Proceedings of the 56th Annual Design
Automation Conference 2019, 2019, pp. 1–6.

[46] R. Ahmad, M.Z. Afzal, S.F. Rashid, M. Liwicki, T. Breuel, A. Dengel, Kpti: Katib’s
pashto text imagebase and deep learning benchmark, in: 2016 15th International
Conference on Frontiers in Handwriting Recognition, ICFHR, IEEE, 2016, pp.
453–458.

https://doi.org/10.1145/3445814.3446742
http://refhub.elsevier.com/S1383-7621(24)00044-4/sb33
http://refhub.elsevier.com/S1383-7621(24)00044-4/sb33
http://refhub.elsevier.com/S1383-7621(24)00044-4/sb33
http://refhub.elsevier.com/S1383-7621(24)00044-4/sb34
http://refhub.elsevier.com/S1383-7621(24)00044-4/sb34
http://refhub.elsevier.com/S1383-7621(24)00044-4/sb34
http://refhub.elsevier.com/S1383-7621(24)00044-4/sb34
http://refhub.elsevier.com/S1383-7621(24)00044-4/sb34
http://refhub.elsevier.com/S1383-7621(24)00044-4/sb35
http://refhub.elsevier.com/S1383-7621(24)00044-4/sb35
http://refhub.elsevier.com/S1383-7621(24)00044-4/sb35
http://refhub.elsevier.com/S1383-7621(24)00044-4/sb36
http://refhub.elsevier.com/S1383-7621(24)00044-4/sb36
http://refhub.elsevier.com/S1383-7621(24)00044-4/sb36
http://refhub.elsevier.com/S1383-7621(24)00044-4/sb36
http://refhub.elsevier.com/S1383-7621(24)00044-4/sb36
http://refhub.elsevier.com/S1383-7621(24)00044-4/sb37
http://refhub.elsevier.com/S1383-7621(24)00044-4/sb37
http://refhub.elsevier.com/S1383-7621(24)00044-4/sb37
http://refhub.elsevier.com/S1383-7621(24)00044-4/sb37
http://refhub.elsevier.com/S1383-7621(24)00044-4/sb37
http://refhub.elsevier.com/S1383-7621(24)00044-4/sb38
http://refhub.elsevier.com/S1383-7621(24)00044-4/sb38
http://refhub.elsevier.com/S1383-7621(24)00044-4/sb38
http://refhub.elsevier.com/S1383-7621(24)00044-4/sb38
http://refhub.elsevier.com/S1383-7621(24)00044-4/sb38
http://refhub.elsevier.com/S1383-7621(24)00044-4/sb39
http://refhub.elsevier.com/S1383-7621(24)00044-4/sb39
http://refhub.elsevier.com/S1383-7621(24)00044-4/sb39
http://refhub.elsevier.com/S1383-7621(24)00044-4/sb40
http://refhub.elsevier.com/S1383-7621(24)00044-4/sb40
http://refhub.elsevier.com/S1383-7621(24)00044-4/sb40
http://refhub.elsevier.com/S1383-7621(24)00044-4/sb41
http://refhub.elsevier.com/S1383-7621(24)00044-4/sb41
http://refhub.elsevier.com/S1383-7621(24)00044-4/sb41
http://refhub.elsevier.com/S1383-7621(24)00044-4/sb41
http://refhub.elsevier.com/S1383-7621(24)00044-4/sb41
http://refhub.elsevier.com/S1383-7621(24)00044-4/sb42
http://refhub.elsevier.com/S1383-7621(24)00044-4/sb42
http://refhub.elsevier.com/S1383-7621(24)00044-4/sb42
http://refhub.elsevier.com/S1383-7621(24)00044-4/sb42
http://refhub.elsevier.com/S1383-7621(24)00044-4/sb42
http://refhub.elsevier.com/S1383-7621(24)00044-4/sb42
http://refhub.elsevier.com/S1383-7621(24)00044-4/sb42
http://refhub.elsevier.com/S1383-7621(24)00044-4/sb43
http://refhub.elsevier.com/S1383-7621(24)00044-4/sb43
http://refhub.elsevier.com/S1383-7621(24)00044-4/sb43
http://refhub.elsevier.com/S1383-7621(24)00044-4/sb43
http://refhub.elsevier.com/S1383-7621(24)00044-4/sb43
http://refhub.elsevier.com/S1383-7621(24)00044-4/sb44
http://refhub.elsevier.com/S1383-7621(24)00044-4/sb44
http://refhub.elsevier.com/S1383-7621(24)00044-4/sb44
http://refhub.elsevier.com/S1383-7621(24)00044-4/sb44
http://refhub.elsevier.com/S1383-7621(24)00044-4/sb44
http://refhub.elsevier.com/S1383-7621(24)00044-4/sb44
http://refhub.elsevier.com/S1383-7621(24)00044-4/sb44
http://refhub.elsevier.com/S1383-7621(24)00044-4/sb45
http://refhub.elsevier.com/S1383-7621(24)00044-4/sb45
http://refhub.elsevier.com/S1383-7621(24)00044-4/sb45
http://refhub.elsevier.com/S1383-7621(24)00044-4/sb45
http://refhub.elsevier.com/S1383-7621(24)00044-4/sb45
http://refhub.elsevier.com/S1383-7621(24)00044-4/sb46
http://refhub.elsevier.com/S1383-7621(24)00044-4/sb46
http://refhub.elsevier.com/S1383-7621(24)00044-4/sb46
http://refhub.elsevier.com/S1383-7621(24)00044-4/sb46
http://refhub.elsevier.com/S1383-7621(24)00044-4/sb46
http://refhub.elsevier.com/S1383-7621(24)00044-4/sb46
http://refhub.elsevier.com/S1383-7621(24)00044-4/sb46

	SecurityCloak: Protection against cache timing and speculative memory access attacks
	Introduction
	Background And Motivation
	SecurityCloak Framework
	Creating False Hits and False Misses
	Delay Speculative Load Misses or SafeLoadOnMiss
	SafeLoadOnMiss
	Real-time Attack Detection
	Alternate Between Safe and Unsafe Modes
	Random Replacement Policy

	Experimental Evaluation
	Experimental Setup
	Workloads
	Analysis of False Hits:
	Analysis of False Misses
	Using Prime & Probe Side-Channel
	Using Flush & Reload Side-Channel
	Performance Impact of False Misses
	Using Random Evictions Only When Needed

	Combined Analysis
	Evaluation of SafeLoadOnMiss Technique
	Switching Between Safe And UnSafe Modes
	Hardware Overhead

	Related Work
	Types of Attacks Based on Timing Cache Accesses
	Mitigating Cache Side-Channel Attacks
	Attacks Based on Speculation
	Mitigating Speculative Attacks

	Conclusion
	CRediT authorship contribution statement
	Declaration of competing interest
	Data availability
	Acknowledgments
	References

