
Quantifying Wasted Write Energy in the Memory Hierarchy

Charles Shelor, Jim Buchanan, and Krishna Kavi Ron Cytron
Department of Computer Science and Engineering Department of Computer Science

University of North Texas Washington University
Denton, TX, USA St. Louis, MO, USA

Abstract

Wasted writes occur when modified cache lines are
evicted and written back to main memory even though
the data contained in those lines is no longer needed by
the program or does not change the existing memory
contents. Wasted writes include values in retreating
stacks and values in heap objects that have been deal-
located. They also occur as a result of unmodified
data values being written back as part of a modified
cache line. Wasted writes consume energy, consume
execution time as memory bandwidth and consume
component lifetime of limited write-cycle technologies
such as flash memory or phase-change memory (PCM).
This paper characterizes the number and type of wasted
writes through the memory hierarchy and quantifies
the amount of potential energy savings that can be
obtained from eliminating wasted writes. If all of the
wasted writes could be eliminated from our benchmarks,
15.5% of the total memory subsystem energy could be
saved.

1 Introduction

One of the major focuses in current research of
computing systems is minimizing the power consump-
tion of computations. This is a broad-based research
theme as mobile computing devices strive for longer
battery life while cloud-computing data centers and
supercomputers are concerned with the massive power
needs and cooling requirements for their systems. This
is being addressed by the computing industry in many
ways: continuing improvements in semiconductor tech-
nology, optimizing cache configurations, and low-power
circuit-design rules are just a few examples. This paper
proposes the reduction of wasted writes throughout the
memory hierarchy as another method to reduce energy
use within a computer system. The paper documents
the type and quantity of wasted writes at each level of
the memory hierarchy for various benchmarks. This
information is then used to propose methods to reduce
or eliminate the wasted writes at each of the levels.

The results from this research for a typical cache

configuration show 59% of the bytes written to the L1
cache, 69% of the bytes written to the L2 cache, 66% of
the bytes written to the L3 cache, and 44% of the bytes
written to main memory fall into the wasted-writes cat-
egories. Eliminating all of these wasted writes would
save 15.5% of the energy used by the cache-memory
subsystem. Even if only 1/2 of the wasted writes are
removed, nearly 8% of the cache-memory power use
would be saved. This paper will show that wasted
writes come from a variety of sources, and reducing
these wasted writes requires cooperation between com-
piler and architectural enhancements for maximum
benefits.

Section 2 classifies writes (or data modifications)
for the purpose of identifying unnecessary writes. Sec-
tion 3 describes the tools used and modifications to
those tools required to perform the write classification
and to collect the data for determining the wasted
writes. Section 4 describes the experimental setup of
benchmarks and the cache configurations used in the
data-collection process. Section 5 discusses the results
and analysis of the experiment. Section 6 proposes
some methods of reducing the wasted writes. Section
7 describes the research to be performed to test and
evaluate the proposed wasted-write reductions. Section
8 contrasts the work of this paper with other research
projects with similar goals. Section 9 provides the
conclusions derived from this research.

2 Write Classification

The team reviewed characteristics of write op-
erations to determine a classification system. Each
class was analyzed, and a determination was made as
to whether the write was necessary for correct pro-
gram execution or if it was a wasted write. The first
three classes apply to processor writes and to cache-
line write-back writes, while the last three classes apply
only to cache-line write-backs. The following classes
were developed and used for this paper:

Live Writes. A live write is when data is written
to an address and changes its current value and later

that address is read by the application program. A live
write is the common conception of all write accesses. A
live write should never be eliminated as it would result
in an incorrect program result. Thus, a live write is
the only write category that is not a wasted write.

Useless Writes. A useless write is a processor
write transaction that modifies the data at an address,
but the changed data is never read by the application
program. This may be the result of a subsequent write
changing the data before it is read or by the application
program terminating without reading the new data.
As the information from a useless write is never used,
the write can be eliminated without affecting correct
program execution.

Dusty Writes. A dusty write is a processor write
operation where the current data at the write address
already matches the data being written. One example
of this is a linked-list being followed back to its starting
point. When this cache line is written back to memory,
the write data matches the original data. Another
example occurs in sorting routines where some items
are already partially sorted and get written back to
their original locations. Dusty writes are easy to detect
during the write cycle by comparing the data being
written to the existing data at that address.

Dead Writes. A dead write is a cache-line write
operation where the address of the cache line is no
longer active within the application program. One
source of dead writes is when a heap block has been
freed and there are dirty cache lines for that freed block
that eventually get evicted from the cache and written
back to the next level. Another source of dead writes
is a retreating stack. Modified data left on the stack
when a function returns will never be accessed again
by the program.

Untouched Writes. An untouched write occurs
when a cache line with its dirty bit set is written back
and parts of the cache line have not been modified
since the cache-line fill operation. Since the data has
not been modified while it was in the cache line, it
still matches the data in memory making this a wasted
write. Untouched writes will not occur at the cache
line or cache sub-block granularity as this condition
implies the dirty bit for that data has not been set and
a write-back would not be triggered.

Mixed Writes. A mixed write occurs when a
cache line or cache sub-block contains a mixture of
live writes with wasted writes. The necessary writes
require the cache line or sub-block to be written to
ensure program correctness, even if the majority of
the cache line or sub-block consists of wasted writes.
A mixed write that contains at least one live write
byte cannot be considered a wasted write at cache-line
granularity as the write must be performed for program
correctness. However, cache lines that are a mixture

of only dead, dusty, useless and untouched writes are
categorized as wasted writes.

3 Tools Used

The project chose to use Valgrind, Gleipnir,
DineroIV and Cacti as the tools for this research.

Valgrind. Valgrind [10] was used to perform in-
strumented simulation of the benchmarks. Valgrind
is a simulation framework allowing a variety of tools
to monitor and interact with the program being simu-
lated. There were no changes made to the core Valgrind
operation.

Gleipnir. Gleipnir [7] is a data-structure analysis
tool integrated into the Valgrind framework. Gleipnir
was used to determine global, heap, or stack scope of the
memory accesses and to generate the trace files of each
memory access. The Gleipnir trace-output functions
were modified to include the data values at each of the
addresses in the trace as that information is required
to detect dusty writes. Gleipnir was also modified to
output a trace record for each change to the application
stack pointer to detect dead writes from the unused
portions of the stack. A final modification to Gleipnir
added address and size information for all forms of
malloc() and added address information for all free()
function calls to the output trace file. This information
was needed to detect dead writes to deallocated heap
objects.

DineroIV. DineroIV [4] was used to simulate the
cache activity from the Gleipnir trace files. The released
form of DineroIV is data agnostic and performs all of its
cache simulation using the trace addresses. DineroIV
was modified to track data values to detect dusty writes.
Dirty, valid, and last-access-type status bits were added
for each cache-line byte to classify live, useless, and
untouched accesses of each byte. Modifications were
made to the logic to classify and count the different
types of writes as they occurred throughout the memory
hierarchy.

Cacti. Cacti [12] is a cache energy and access time
estimation tool. Cacti version 6.0 was used to provide
energy estimates for each level of the various cache
configurations analyzed in the study. No modifications
were made to the Cacti tool.

4 Experimental Setup

4.1 Benchmarks Analyzed

Five benchmarks totaling seven variations from
the CPU2006 SPECmark series [11] were processed
through Valgrind and Gleipnir. The SPEC benchmarks

selected for this study are representative of industry
workloads and are sufficiently large to exercise the
cache. Many of the smaller benchmarks, such as those
in the MiBench [6] benchmark suite, were found to
be components of applications rather than complete
applications and would sometimes be wholly contained
within the caches. In some cases the last-level cache was
not even utilized in the benchmark’s execution. The
benchmarks selected for use in this study were required
to have a minimum of 10 seconds and a maximum
of 10 minutes of real-time execution. The minimum
requirement assured the benchmark truly exercised the
memory subsystem, while the maximum requirement
is needed to create an upper bound on simulation time
and trace-file size. Simulation execution times were
as low as 37 minutes and as high as 52 hours for the
selected benchmarks. The SPEC benchmarks used were
bzip2, gcc 166, gcc 200, gcc c-typeck, gobmk, hmmer,
and mcf. The three variations of gcc were kept as they
each had significantly different memory access profiles
from the others.

4.2 Cache Configurations

There were fourteen cache configurations used to
analyze wasted writes in this project. Small, nominal,
and large 2-level caches without sub blocks; small, nom-
inal, and large 3-level caches without sub blocks; nomi-
nal 3-level caches with 2, 4, and 8 sub blocks per cache
line; nominal 3-level caches with 16, 32, 64, and 128
bytes per cache line; and nominal 3-level caches with
an increasing number of bytes per cache line per level of
16/32/64, nominal-3L-mix1, and 32/64/128, nominal-
3L-mix2. This variety of cache configurations allows
determination of wasted write sensitivity to cache size,
cache-line size, and use of sub blocks. Every cache
configuration uses a split level-1 cache and a unified
cache at all other levels. The nominal 2-level cache
configuration is representative of caches similar to the
Arm Cortex A-15 [1] cache with the shared L2 cache
equally distributed among the cores (L1: 32K instruc-
tion, 32K data; L2: 1024K per core). The nominal
3-level cache configuration is representative of caches
similar to the Intel Ivy Bridge [5] cache configuration
with the shared L3 cache equally distributed among the
cores (L1: 32K instruction, 32K data; L2: 256K unified;
L3: 2048K per core). The small cache configurations
are 1/2 the size of the nominal caches and represent
caches either smaller than the nominal configuration
or represent the effect of adding overhead functions for
the operating system and its various processes to the
benchmark task. The large cache configurations are 2
times the size of the nominal caches and can represent
next-generation caches or a benchmark process getting
a double allocation of the shared cache.

4.3 Energy Savings Estimation

A goal of the first phase of this project was an ap-
proximate potential energy savings if all wasted writes
were eliminated. It is unlikely that all wasted writes
can be removed, but this assumption establishes an
upper bound on the savings that might be achieved.
The assumption was made that reads and writes at
each level required the same amount of energy. This
is not true for PCM and flash-memory technologies
where the write energy is significantly more than the
read energy; however, for SRAM caches and DRAM
memories this assumption is suitable. The Cacti cache-
energy estimator was used to estimate the energy per
access for each level of each cache configuration using
32 nm technology. The study produces results in terms
of percentage of energy saved, so variations in technol-
ogy and clock rate have minimal impact on the study
results.

The energy required for memory-level accesses was
computed by summing the energy needed to communi-
cate between the CPU and the memory with the energy
needed for the memory access. The transfer energy
was computed using E = 1/2 V2 C. C was chosen as 20
pF to represent a typical memory data signal’s total
capacitance for trace and connected devices. V was
set to 1.5 Volts as the nominal voltage swing of single
ended DDR3 memory devices. Address and control
lines used 40 pF for C as there are more device loads
on each address and control line. Each data line was
toggled at 50% of the transfer rate based on the sta-
tistical assumption that each bit was 50% 0 and 50%
1. Thus, there is a 50% chance that the next bit is
different from the present bit resulting in a 50% tog-
gle rate being an appropriate value for the equation.
Each address/control line was assumed to change once
per cache-line access, based on typical DRAM memory
burst-mode operation. The energy for the memory
access was derived from the power required for a burst
write (P = VDD * IDD) divided by the transition rate
for the burst (E = P / T) multiplied by the number of
transitions required to transfer a cache line on a 256-bit
memory bus and multiplied by the number of memory
chips needed to implement a 256-bit memory bus. The
Micron MT41J512M8 [9] DDR3 memory device data
sheet provided the VDD, IDD and T values for an 800
MHz memory subsystem. The energy for the cache
to memory controller data transfer within the proces-
sor device and the energy for the memory-controller
operation itself was assumed to be negligible for this
phase of the research. As the final analysis is based on
a percentage of energy that could be saved, moderate
variations to these values should have little influence
on the results.

0
10
20
30
40
50
60
70
80
90

100

 L1-d
ead

 %

 L1-d
ust

 %

 L1-u
nto

uc
h %

 L1-u
sel

ess
 %

 L1-w
ast

e %

 L2-d
ead

 %

 L2-d
ust

 %

 L2-u
nto

uc
h %

 L2-u
sel

ess
 %

 L2-w
ast

e %

 L3-d
ead

 %

 L3-d
ust

 %

 L3-u
nto

uc
h %

 L3-u
sel

ess
 %

 L3-w
ast

e %

 M
em

-de
ad

 %

 M
em

-du
st %

 M
em

-un
tou

ch
 %

 M
em

-us
ele

ss
%

 M
em

-w
ast

e %

 bzip2 gcc_166 gcc_200 gcc_c-typeck gobmk hmmer mcf average

Figure 1: Wasted Write Breakdown by Level and Type for Nominal 3-Level Cache

5 Results and Analysis

All of our results are provided as percentages for
each benchmark. This prevents longer-running bench-
marks from dominating shorter-running benchmarks if
access counts or actual energy values were used. All of
the results shown in this paper are based on collecting
data by individual bytes rather than application-level
data objects as the present cache simulator does not
maintain information about data-object size through-
out the cache hierarchy. The multi-core cache simulator
being developed for the next phase of this research will
provide data-element size tracking. The memory trace
files generated by Valgrind and Gleipnir for this re-
search use virtual addressing. The authors believe that
the difference between virtual and physical addressing
will have minimal impact on this study, although phys-
ical addressing will be incorporated in the next phase
of this research to validate this statement.

Figure 1 shows the wasted write breakdown for
each level of the memory hierarchy for the nominal 3-
level cache configuration. The x-axis labels, “LL-CAT
%)”, identify the measurement level in the memory
hierarchy (L1 cache, L2 cache, L3 cache, or memory)
and the wasted write category (dead, dusty, untouched,
useless, or total-wasted). The y-axis indicates the per-
centage of bytes written at that cache level that belong
to the indicated category. The number is computed
by dividing the number of bytes written at that cache
level in the indicated write category by the total num-
ber of bytes written at that cache level and expressing
the result as a percentage. One observation that can
be made is there are very few useless writes at any
level and they have minimal impact to the total wasted
writes of the system. Another observation is there are
no dead writes and no untouched writes at the Level 1
cache. As stated earlier, if the processor is accessing
memory, it cannot be classified as a dead write. Also

by definition, an untouched write can occur only during
a cache-line write-back, so a processor-L1 transaction
will never have an untouched write. A general trend
can be observed where the percentage of dusty writes
decreases as the level moves further from the processor.
This is a result of the average time between writes at
each cache level increasing as the level increases, reduc-
ing the chance of the same value being written multiple
times. The untouched write category is generally the
highest for each benchmark at the L2, L3 and memory
levels, with the notable exception of hmmer with 99%
dead writes. The hmmer benchmark has a large amount
of heap activity with a very large memory footprint
causing many cache-line evictions of deallocated heap
objects, producing the very high dead writes beyond
level 1 cache. This graph shows that no single type
of wasted writes completely dominates all levels or all
benchmarks; therefore all of the wasted write types
should be addressed to maximize the possible savings.
The nominal 3-level cache configuration, similar to the
Intel Ivy Bridge, showed a benchmark average of 44.2%
of all bytes written to memory as being wasted writes.

Figure 2 shows the total wasted write percentages
by benchmark for all of the analyzed cache configura-
tions measured at the memory level. The x-axis labels
indicate the cache size as small, nominal, or large; in-
dicate if it is a two-level cache, ”-2L”, or a three-level
cache, ”-3L”; indicate if there are subblocks in the cache
line, ”-2sb, -4sb, -8sb”; the cache-line block size if it is
not the default 64 bytes, ”-16blk, -32blk, -128blk”; and
indicate if the configuration used a mixture of cache-
line sizes, ”-mix1” (16/32/64 bytes per cache line) or
”-mix2” (32/64/128 bytes per cache line). The y-axis
indicates the percentage of total wasted write bytes
written to total bytes written at the DRAM memory
level. This value is computed for a cache configuration
by taking the total number of wasted write bytes writ-
ten to memory and dividing it by the total number of

0
10
20
30
40
50
60
70
80
90

100

 Small
-2L

 N
om

ina
l-2

L

 Larg
e-2

L

 Small
-3L

 N
om

ina
l-3

L

 Larg
e-3

L

 N
om

ina
l-3

L-2s
b

 N
om

ina
l-3

L-4s
b

 N
om

ina
l-3

L-8s
b

 N
om

ina
l-3

L-16
blk

 N
om

ina
l-3

L-32
blk

 N
om

ina
l-3

L-12
8b

lk

 N
om

ina
l-3

L-m
ix1

 N
om

ina
l-3

L-m
ix2

 bzip2 gcc_166 gcc_200 gcc_c-typeck gobmk hmmer mcf average

Figure 2: Wasted Write Breakdown by Cache Configuration at Memory Level

bytes written to memory for each benchmark and then
averaging this percentage for the benchmarks. In gen-
eral, smaller cache sizes are observed to have a slightly
higher wasted write percentage than larger cache sizes.
The 2-level caches had 52%, 48%, and 44% wasted
writes for small, nominal, and large sizes respectively.
The 3-level caches had 48%, 44%, and 43% wasted
writes for small, nominal, and large sizes respectively.
The higher rate of evictions of the smaller caches result
in cache lines with a higher percentage of untouched
bytes. However, in some cases, such as the mcf bench-
mark, the wasted write percentage increased slightly
with increasing cache size. The moderate number of
dead writes in mcf, 22% for nominal 3L, decreased
with faster evictions with the smaller caches than un-
touched writes increased with the larger caches. Some
small variations are seen among the caches with 2, 4,
and 8 sub-blocks. However, the variations are minor
with the 2 and 4 sub-blocks decreasing the average
wasted writes by 0.02 and 0.18 percent. The cache
configuration with 8 sub-blocks actually increased the
percentage of wasted writes by 2.48%. The cause of
the increase in wasted writes when a small decrease
was expected has not yet been determined and will be
further examined in the next phase of the research. The
cache configurations with smaller block sizes resulted
in smaller wasted writes, although not by a significant
amount. The 16-byte block size yielded 41% wasted
writes which is 3 percentage points less than the nomi-
nal 64-byte block size. The 128-byte block size yielded
46% or 1.4 percentage points higher than the nominal.
This trend is expected as the larger cache-line sizes
will likely contain larger amounts of untouched data.
The cache configurations with a different block size per
level yielded average wasted write percentages within
0.1 percentage point of the cache configuration with
the matching L3 block size. Some runs were made with
different set associativities (2, 4, 8 at L1 with 4, 8,

and 16 at L2 and L3), and they resulted in less than
0.5 percentage point variations. This data shows that
cache size has a moderate effect on wasted write per-
centages, and all other cache configuration variations
have negligible effects.

Similar information measured at the Level-1 cache,
Level-2 cache, and Level-3 cache showed the same gen-
eral trends, although some benchmarks have their peak
value of wasted writes at different cache levels than
others. This is simply a reflection of the differences in
memory footprint and access sequences of the bench-
marks.

The previous analyses have looked at each level
of the memory hierarchy independently and displayed
the results as percentages at that level. The analysis
of total energy savings must be computed for the total
memory subsystem before being made a percentage
as the energy per access at each level differs and the
frequency of access at each level is different. The total
energy used at each level was computed by multiplying
the energy required per access at that level times the
sum of the instruction accesses, plus the sum of all read
accesses, plus the sum of all write accesses. The wasted
energy at each level was computed by multiplying the
energy required per access at that level times the total
wasted accesses at that level. The total energy and
wasted energy of each level were summed to get the
total energy and wasted energy of the memory subsys-
tem. Taking the wasted energy of the subsystem and
dividing it by the total energy of the subsystem gener-
ated the wasted energy percentages shown in Figure 3.
The x-axis labels show the same cache configurations
used in and described for Figure 2. The y-axis shows
the percentage of energy wasted by benchmark within
each cache configuration. The wasted write energy
savings range from 13.2% for the large 3-level cache
to 19.6% for the nominal 3-level cache using 8 sub-
blocks. The Nominal-3L cache configuration shows a

0
5

10
15
20
25
30
35
40
45
50

 Small
-2L

 N
om

ina
l-2

L

 Larg
e-2

L

 Small
-3L

 N
om

ina
l-3

L

 Larg
e-3

L

 N
om

ina
l-3

L-2s
b

 N
om

ina
l-3

L-4s
b

 N
om

ina
l-3

L-8s
b

 N
om

ina
l-3

L-16
blk

 N
om

ina
l-3

L-32
blk

 N
om

ina
l-3

L-12
8b

lk

 N
om

ina
l-3

L-m
ix1

 N
om

ina
l-3

L-m
ix2

 bzip2 gcc_166 gcc_200 gcc_c-typeck gobmk hmmer mcf average

Figure 3: Wasted Energy by Cache Configuration and Benchmark

minimum wasted energy savings of 6.1% for the gcc 200
benchmark, a maximum wasted energy of 44% for the
hmmer benchmark and an average wasted energy of
15.5%. The wasted write energy percentages for flash
technology and PCM technology will be higher than
those for DRAM systems because the energy required
for writing in those technologies is significantly higher
than the energy used for reading.

The potential energy savings must be summarized
at the memory subsystem level because of interesting
interactions between the cache levels. The Cacti energy
estimates for the nominal 3-level cache are 0.16 nJ,
0.03 nJ, and 0.11 nJ for the L1, L2, and L3 accesses
respectively. The L2 is lower energy than the L1 as
it is slower and only slightly larger. The L3 energy
is higher than the L2 because it is much larger. A
cache-line write to DRAM requires 16.11 nJ. Since
accessing memory requires 100 times the energy of
accessing the L1 cache, the results might be skewed
to the wasted write percentages seen in Figure 2 for
the memory level. However, approximately 99% of all
accesses are handled by the cache such that the actual
number of memory transactions is much less than the
number of cache transactions. There are 100 times
more accesses to cache than memory, but each access
to memory requires 100 times the energy as a cache
access. The true picture of energy use is obtained only
when all of the memory hierarchy is included.

6 Proposed Implementations

This paper has identified four types of wasted
writes through the memory hierarchy. This section
addresses methods that can reduce or eliminate the
wasted writes.

A useless write is a write whose value is not read in
the future. There is no feasible method for the memory

subsystem to determine at the time of the write whether
or not the data value is going to be read in the future.
However, Butts [3] uses a prediction mechanism in the
processor pipeline for useless instruction elimination
that successfully eliminates 79% of useless instructions.
There was a reduction in register writes of 1.7% to
11.3% in the benchmarks analyzed by Butts which
is similar to the 1.6% to 13.6% of useless writes for
the level 1 cache shown in Figure 1. Figure 1 also
shows that the useless write category has a very small
contribution to wasted writes for the level 2 cache, the
level 3 cache, and the main memory. This indicates
that attempting further reduction of useless writes at
those memory levels will be both difficult and have little
benefit. However, since 99% of memory accesses are
handled by the level 1 cache, minimizing the useless
writes at the level 1 cache might have a noticeable
improvement in the cache energy savings. As shown in
Butts, many of the useless instructions were created
by instruction scheduling by the compiler. Therefore,
it might be possible for a compiler liveness analysis
to determine that particular writes are useless and
to remove them through compiler optimizations and
different instruction scheduling algorithms.

Dead writes can be minimized with fairly simple
architectural changes and run-time library updates.
Marking a cache line as invalid or making a cache line
clean by clearing the dirty bit are common cache opera-
tions used when terminating a program. This prevents
writing stale data from the terminated process to mem-
ory that may have been reallocated to a subsequent
process. The addition of cache-line-invalidate or cache-
line-clean operations to the run-time library functions
that free allocated memory will eliminate dead writes
when heap objects are deallocated. This approach can
be implemented with existing cache systems. Another
approach could be implemented within the cache with
a cache-line-batch-invalidate operation that accepts an

address argument and a size argument. This operation
would invalidate all of the cache lines associated with
the given block of memory with a lower processor over-
head than performing the invalidate one line at a time.
Additionally, It may be useful to have all run-time
memory allocations aligned to cache-line boundaries
to ensure that no two heap objects can share a single
cache line.

Dusty writes can be detected in run-time hard-
ware by comparing the written data to the existing
data. When the values are equal, the dirty bit of the
destination cache line would be left unchanged rather
than being set. (If it is already set, it must remain
set.) If all of the writes to that cache line are dusty
writes, then the line will remain clean and will not
have to be written back to the next level when evicted.
Additionally, there may be compiler analyses that can
detect dusty write conditions and remove them during
optimization or group them to share common cache
lines.

Untouched writes can be minimized by compiler
optimizations that group variables that are written
at similar times together. For example, if there are 8
variables that are written from a short code fragment,
the compiler can detect this and allocate addresses such
that the variables share a single cache line rather than
being in 8 separate cache lines. Not only will there
be fewer untouched bytes in the one cache line that
was modified, there is only 1 dirty cache line created
by that code fragment where it could have potentially
created 8 dirty cache lines. This could be as simple as
rearranging the order of elements within a structure in
some programs.

7 Future Work

There are several tasks to be performed in the
next phase of this project. In addition to the new work,
the authors will add more benchmarks to the analysis
to broaden the application base of this effort. The
new benchmarks will still comply with the real-time
execution minimum and maximum limits to ensure
they exercise the memory subsystem sufficiently, yet
remain within reasonable simulation execution times.

The current project collected data by bytes, sub-
blocks, and blocks. A fourth category will be imple-
mented to track at the program variable instance. This
will eliminate the upper parts of pointer and index
values from being marked as dusty writes. This will
also assist in detecting when compiler optimizations in
structure alignment and variable grouping have been
effective. Tracking data by program instance will re-
quire further modifications to the cache simulator to
track data-element sizes within the cache lines.

Simulations using physical addresses, multiple
cores executing simultaneously, shared memory, and
shared caches will be used in the next phase to more
closely model actual system performance. This will
require development of a multi-core cache simulator.

The list of possible solutions will be expanded
in the next phase. Compiler optimizations will be
implemented when possible or emulated by address
manipulation within the trace file when appropriate.
Architectural features will be implemented and sim-
ulated. Each of these optimizations will be used to
create new trace files that will be analyzed to determine
the amount of wasted writes that were eliminated by
the optimization. Each architectural feature will be as-
sessed to determine its costs with respect to increasing
silicon area, increases in energy use, and impacts on
critical paths. This will provide a cost-benefit rating
for each of the methods of wasted write reduction.

8 Related Work

Bock [2] analyzed the impact of wasted write-
backs on the endurance and energy use of PCM main
memory. Although the specific tools varied, the Bock
analysis framework was very similar to that used in
this paper. The main difference in this paper was
attacking the more general problem of wasted writes at
each level of the hierarchy and determining potential
energy savings in DRAM memories. This paper also
used the Cacti cache energy estimation tool to provide
energy estimates at each level of the cache as the energy
per access and number of accesses at each level vary
dramatically. This allowed us to compute the potential
energy savings for the entire memory subsystem rather
than just the memory level and to determine that the
potential energy savings would be worth pursuing in
the next phase.

Lepak [8] analyzed ”silent stores” showing an 11%
performance improvement achieved by detecting and
eliminating these stores in a two-level write-through
system. These ”silent stores” correspond to our dusty
write category that are shown in Figure 1 to be the dom-
inant wasted write at the L1 cache, a minor contributor
to the wasted writes at the L2 and L3 cache, and almost
negligible at the main-memory level of the write-back
cache used in this study. The Lepak paper considered
microarchitecture changes in the pipeline and changes
to Error Correction Codes (ECC) as methods to im-
plement their silent store reductions while our focus is
compiler optimizations and cache implementations.

Butts [3] analyzed the detection and elimination
of dynamic dead-instructions with a mechanism similar
to branch prediction and eliminates execution of those
instructions whose results are not used in subsequent

code. Their work eliminates generation of values in
registers in addition to write cycles from store instruc-
tions. These stores would correspond to the useless
write category of wasted writes discussed in our paper.
We saw minimal useless writes beyond the level 1 cache
in Figure 1. However, most of the benefits of dynamic
dead-instruction elimination occur within the execution
pipeline and are therefore complementary and additive
with respect to our paper.

9 Conclusion

We have characterized and quantified the wasted
writes throughout the cache-memory hierarchy using
industry-standard benchmarks and shown significant
amounts of wasted writes occur at each level of the
hierarchy. We have shown that elimination of all of the
wasted writes would save 15% of the power consumed in
a typical cache-memory subsystem and have embarked
on future work to determine how much of the power
savings can be achieved through compiler and architec-
tural enhancements. Some of these enhancements will
reduce cache conflicts producing higher cache hit rates
with a subsequent reduction in read power and reduc-
tion in memory bandwidth. Additionally, the reduction
in wasted writes will extend the lifetime of memory
technologies that have limited write-cycle endurance.
Reduction in wasted writes can also be affected by
programming practices. For example, a programmer
who does not free memory when it is no longer needed
will prevent the system from classifying those writes as
dead writes.

Acknowledgements

This research is supported in part by NSF award
#1237417 and by industrial memberships of the NSF
Net-Centric IUCRC. The authors wish to acknowledge
the support given by Tomislav Janjusic of UNT on
Valgrind and Gleipnir usage and Mike Ignatowski and
Dave Mayhew of AMD for their suggestions and insights
into cache-memory subsystems of current and future
computer systems.

References

[1] Arm Cortex-A15 Technical Reference Manual,
Chapters 6-7, http://infocenter.arm.com/help/ in-
dex.jsp?topic=/com.arm.doc.ddi0438g/index.html

[2] Bock, S., Childers, B., Melhem, R., Mosse, D.,
Zhang, Y. Analyzing the Impact of Useless Write-
Backs on the Endurance and Energy Consumption

of PCM Main Memory. ISPASS 2011, pp 56-65,
IEEE Conference Publications, NY, NY (2011)

[3] Butts, J. A., Sohi, G. Dynamic dead-instruction
detection and elimination. Proceedings of the 10th
international conference on Architectural support
for programming languages and operating systems
(ASPLOS-X), pp 199-210, ACM, New York, NY,
USA, (2002)

[4] DineroIV web site,
http://pages.cs.wisc.edu/˜markhill/DineroIV/

[5] Intel Core i7-3770K Ivy Bridge Processor Re-
view, http://hothardware.com/Reviews/Intel-Core-
i73770K-Ivy-Bridge-Processor-Review/?page=3

[6] Iqbal, S. M. Z., Liang, Y., Grahn, H., ParMiBench
- An Open-Source Benchmark for Embedded Multi-
processor Systems. In IEEE Computer Architecture
Letters, Vol 9, No. 2, July-December 2010, IEEE
Computer Society, New York

[7] Janjusic, T., Kavi, K., Potter, B., Gleipnir: A
Memory Analysis Tool. International Conference on
Computational Science 2011, pp 2058-2067, Elsevier
Ltd.

[8] Lepak, K. M., Lipasti, M. H., Silent Stores for
Free. In IEEE/ACM International Symposium on
Microarchitecture, December 2000, MICRO 33, pp
22-31, IEEE Computer Society, New York

[9] MT41J512M8 DDR3 SDRAM Data Sheet, Micron
Technology, http://www.micron.com (2009)

[10] Nethercote, N., Seward, J. Valgrind: A Program
Supervision Framework, In: Electronic Notes in
Theoretical Computer Science 89 No 2. pp 44-66.
Elsevier Science B. V. (2003)

[11] SPEC Benchmark Information,
http://www.spec.org/cpu2006/Docs

[12] Thoziyoor, S., Ahn, J. H., Monchiero, M., Brock-
man, J. B., Jouppi, N. P., A Comprehensive Mem-
ory Modeling Tool and its Application to the Design
and Analysis of Future Memory Hierarchies. In-
ternational Symposium on Computer Architecture
2008, pp 51-62, IEEE Press, New York

