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ABSTRACT
Sparse matrix computations have witnessed a resurgence with the

pervasive use of deep neural networks. Leveraging sparsity en-

ables efficiency of storage by avoiding storing zeroes. However,

sparse representations incur metadata computational overheads –

software needs to process the metadata (or indexe) that describes

row/column locations of non-zero values before it can access the cor-

responding data values. There have been several formats proposed

for representing sparse matrices including Compressed Sparse Row

(CSR), Coordinate (COO), Bitmaps, Run-length encoding, & hierar-

chical representations. Each representation achieves different levels

of memory compression and incurs different levels of computa-

tional complexity depending on the sparsity (percentage of zero

values). We seek answers to the following: (i) at what sparsity levels

is it worth eliminating compressed representation of matrices and

use the dense representation that includes both zeros and non-zero

values, and (ii) even if we use compressed data representation, will

it be useful to expand the matrices internally to eliminate meta-

data processing overheads? In this paper we propose the use of a

special hardware called ExPress that expands compressed matrices

into dense data, eliminating metadata computations from the main

processing element. Our ExPress hardware is configurable so that it
can expand from different compressed formats.

Our experiments for matrix-vector multiplication using several

DNN workloads show performance gains of 43%, 33% and 11%

on average over software implementations that use CSR, Bitmap

and Run-length encoding respectively. ExPress shows performance

gains over sparse software codes for sparsity up to 70%. Further,

ExPress simultaneously achieves energy improvement by reducing

the instruction overhead of sparsity-aware computations.
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1 INTRODUCTION
With the trend towards embedding intelligence into the edge, there
is a growing need to support compute and storage-efficient ma-

chine learning algorithms on low-power sensing and handheld

devices. These devices are characterized by simpler cores, and small

on-chip memory [36, 37, 46]. Achieving real-time inference capa-

bility in these devices requires optimizing both the storage and

computations performed by matrix-based kernels such as matrix-

vector multiplication. Leveraging sparsity (zeroes) in the input data

and/or weights of deep neural nets (DNNs) has emerged as a viable

technique to achieve these improvements [18, 39, 49].

Sparsity (the percentage of zeroes in the matrix) is exploited

to improve performance, as well as reduce storage and energy re-

quirements. To achieve these improvements, various sparse matrix

representation techniques have been proposed and used in scientific

and machine learning codes. These include compression formats

such as compressed sparse row (CSR [2]), block compressed CSR

(BCSR [3]), compressed sparse column (CSC [4]), coordinate list

(COO [10]), bit-vectors [39], run-length encoding [39] and hierar-

chical bit-vector representations [27]. Conceptually, these formats

store only non-zero (denoted 𝑁𝑍 ) values of a matrix along with

metadata to indicate the row and column positions (i.e., indices) of

these values. Matrix codes are written to a specific representation

in order to interpret the metadata and to perform computations

only on the 𝑁𝑍 values.

We observe that accessing and processing compressed metadata

incurs overheads. To perform pairwise multiplications of elements

from matching columns (rows), metadata of one matrix is used to

lookup (and often match) the non-zero elements of another. To

illustrate, consider the spMV algorithm that multiplies a sparse

matrix𝑀 by a dense vector 𝑉 to produce an output (dense) vector

𝑌 . Figure 1 shows a sample 3 × 3 matrix 𝑀 and two compressed

representations: compressed sparse rows (CSR) and Bitmap.

Figure 1: A 3x3 sparse matrix in CSR and Bitmap Formats
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In the Bitmap representation, an array stores 0s and 1s corre-

sponding to positions of zeroes and non-zeroes in the matrix. Only

the non-zero values are stored in a separate array. Using the loca-

tions of the 1s in the bitmap array, software determines the cor-

responding column indices to perform matrix computations. For

example, the spMV (sparse matrix-vector multiplication) algorithm

traverses the bitmap array row by row, obtaining the column in-

dices of the 𝑁𝑍 values (corresponding to 1 bits in the bitmap), and

accesses the corresponding indices of the (dense) vector𝑉 . A simpli-

fied outline of this algorithm implemented is shown in Algorithm 1

below.

Algorithm 1 Bitmap Version of spMV

1: procedure spMV

2: w← 0

3: for 𝑖 = 0; 𝑖 < 𝑛; 𝑖 = 𝑖 + 1 do
4: s← 0

5: for 𝑗 = 0; 𝑗 < 𝑛; 𝑗 = 𝑗 + 𝑐 do
6: bits← bitmap[w++]
7: for 𝑘 = 0;𝑘 < 𝑐;𝑘+ = 1 do
8: if bits & 0x1 then
9: s← s + 𝑣𝑎𝑙𝑠 [𝑛𝑒𝑥𝑡] × 𝑣 [ 𝑗 + 𝑘]
10: bits = bits >> 1

11: 𝑛𝑒𝑥𝑡 = 𝑛𝑒𝑥𝑡 + 1
12: y[i]← s

Array 𝑏𝑖𝑡𝑚𝑎𝑝 [.] holds the metadata of 0s and 1s, while array

𝑣𝑎𝑙𝑠 [.] holds the non-zero values of the original matrix. 𝑣 [.] is the
dense vector. Each iteration of the loop on loop index 𝑗 , the code

fetches the next chunk of the bitmap (shown as of size 𝑐 , where

𝑐 could be 32-bit) and goes over each bit examining if it is a 1. If

it is a 1, then the next value from 𝑣𝑎𝑙𝑠 [.] is multiplied with the

corresponding element from 𝑣 [.] and accumulated.

There are several performance overheads with this software-

only approach. One, the metadata cost is high: each innermost

loop iteration includes a check on the bit value before the actual

multiply-accumulate can be performed. Two, unlike the traditional

uncompressed matrix-vector multiplication algorithm, this sparse

version has three nested loops thereby incurring additional loop

control overheads. Three, the code is hard to parallelize/vectorize.

As we will quantitatively discuss in Section 2, the Bitmap compres-

sion technique is not efficient for lower sparsity matrices. Similarly,

almost all other compression techniques incur metadata overheads

that often constitute a large fraction of processing cycles especially

when the sparse matrices do not exhibit high sparsity. In fact, low

to moderate sparsity (20% − 70%) is dominant in DNN workloads

unlike the traditional scientific domain where sparsity in matrices

is very high [6], [38]. Thus, while the sparsity needs to be leveraged

for storage and energy gains, the performance drawback needs to

be addressed.

In this work, we seek answers to the following: (i) at what spar-

sity levels is it worth eliminating compressed representation of

matrices and use dense (uncompressed) representation of data that

include both zeros and non-zero values, and (ii) even if we use

compressed data representation, will it be useful to expand the

matrices internally to eliminate metadata computations? In this

context we propose ExPress– a hardware accelerator. Denoted Ex-
Press, the accelerator’s goal is to simultaneously improve storage,

energy and performance of low-sparsity matrix codes by expanding

compressed matrices. Expanded data is presented to the CPU via

memory buffers. In addition, ExPress supplies mask bits to let the

CPU skip wasteful computations. Thus, ExPress simultaneously en-

ables efficient storage as well as efficient computations by removing

the metadata (or index) processing burden from software codes. We

incorporate ExPress support within the RISCV RV32IMCV ISA.

We make the following contributions:

• Design and evaluate a novel memory-side accelerator that

works in unison with matrix-based codes running on CPU

cores. The accelerator improves performance of embedded

single-threaded cores by eliminating sparse matrix metadata

overheads and improving compute–memory overlap.

• Leverage the open RISCV RV32 32-bit core as our baseline

to design the operation of the accelerator.

• Across a range of sparse matrices drawn from DNN work-

loads, and synthetic benchmarks, we demonstrate that Ex-
Press improves performance of spMV by 43%, 33% and 11%

on average over Bitmap, Run-Length (RL) and CSR software

codes respectively in embedded systems.

• ExPress simultaneously achieves 15%, and 10% energy reduc-

tion over Bitmap and RL formats respectively by eliminating

metadata processing cycles from processing elements.

2 BACKGROUND AND MOTIVATION
Intelligent real-time sensing applications such as keyword spot-

ting [49] and visual wake word recognition [8] require real-time

machine-learning based inference engines to execute on low-power

sensors that are limited by power, storage and compute capabilities.

On the low end of the compute spectrum, these microcontroller-

based devices (MCUs) comprise simple in-order cores (such as a

core from ARM Cortex-M series or RISCV RV32) integrated with

a small on-chip SRAM (100KBs – a few MBs), clocked at no more

than a few hundred million cycles per second. Thus, achieving in-

telligence at the edge requires highly optimized implementations

of various types of ML inference algorithms.

Both Convolutional neural nets (CNN) and Recurrent neural nets

(RNN) employ matrix-based algorithms for applications such as ob-

ject detection [14], image captioning [28], speech recognition [16],

and natural language processing [33]. With feature sizes and out-

put classes in the order of a few thousand elements, the storage

capacity required often exceeds available SRAM. For example, the

final fully connected layer of VGG16 [45] employs a 4K x 1K weight

matrix requiring a few MBs of storage. Thus, techniques such as

network pruning and quantization have been used to reduce the

memory footprint by eliminating some connections (weights set

to 0) or by avoiding storing 0 values in intermediate features [19].

Unlike scientific sparse matrices, CNNs contain far less sparsity.

Figure 2 plots the average sparsity of the output in each convolution

layer of quantized implementations of VGG16, VGG19 and Cifar10.

While sparsity improves with layer depth, earlier layers have only

a moderate level of sparsity to exploit – more than half the layers
have less than 60% sparsity.
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Figure 2: Sparsity by Convolution Layer

Several sparse matrix formats have been proposed to achieve

lossless compressed storage of sparse feature maps and weights [7,

18, 27, 32, 39, 40, 45]. While all of these formats achieve storage

efficiency, they incur computational overhead to extract non-zero

values using the matrix metadata, and sparse matrix algorithms are

harder to vectorize/parallelize. Given the low to moderate sparsity

seen in several convolution layers (see Figure 2), these compres-

sion overheads may annul the storage and computation savings

expected with sparse data. Thus a wholistic analysis of the benefits

of compression is needed, accounting not just for storage, but also

for performance as well as energy. Below, we examine each of these

for three representative formats – CSR, bitmap and run-length en-

coding, to motivate our ExPress design. Our goal is not to provide

an exhaustive comparison of these formats but rather to provide

motivation for jointly optimizing storage, performance and energy

of sparse computations.

Storage Efficiency: Table 1 lists the storage requirements for

various formats given an input 𝑛 × 𝑛 matrix with sparsity 𝑠 (spar-

sity refers to the fraction of data that are zeros – higher spar-

sity means more zeroes) and each non-zero element occupying

𝑒 bytes. The sizes shown assume bit-exact allocations – byte align-

ment or padding incur additional storage. Compressed Sparse Rows

(CSR [2]) stores non-zero values of the sparse matrix in a row-major

order. All the non-zero columns are stored in a CSR_Cols array
(𝑠𝑛2

𝑙𝑜𝑔2 (𝑛)
8

bytes) and corresponding values in a CSR_Vals array
(𝑠𝑛2𝑒 bytes). A CSR_Rows array contains indices into the CSR_Cols
array marking the start and end of the non-zero data for each row

((𝑛 + 1) 𝑙𝑜𝑔2 (𝑛
2)

8
bytes). In the Bitmap representation (see [40]), a

bit map of the matrix is constructed where each bit corresponds

to a matrix location and the bit value denotes if the location has a

non-zero or zero value. An array of values similar to CSR_Vals is
used to store the non-zero values. In the Run-Length representation

(see [39]), a run of adjacent non-zero values is recorded by a pair

(𝑠𝑡𝑎𝑟𝑡_𝑐𝑜𝑙𝑢𝑚𝑛, 𝑛𝑢𝑚_𝑛𝑜𝑛_𝑧𝑒𝑟𝑜𝑒𝑠). The average length of a run of

non-zeroes is denoted by 𝑙 . All such pairs are stored in an RL_Cols

array (
𝑠𝑛2

2𝑙𝑜𝑔2𝑛

8𝑙
bytes). Non-zero values are stored in an RL_Vals

Format Size (Bytes) Description
Uncompressed 𝑛2𝑒 No metadata needed. Storage

size does not depend on spar-

sity.

CSR (𝑛 + 1) 𝑙𝑜𝑔2 (𝑛
2 )

8
+

𝑠𝑛2𝑒+𝑠𝑛2 𝑙𝑜𝑔2 (𝑛)
8

(𝑛 + 1) 𝑙𝑜𝑔2 (𝑛
2 )

8
is storage for

CSR Row indices. The 𝑙𝑜𝑔2 (𝑛2)
is the worst-case number of bits

required to describe each in-

dex. 𝑠𝑛2𝑒 is storage for non-

zero values. 𝑠𝑛2
𝑙𝑜𝑔2 (𝑛)

8
is stor-

age for CSR column indices of

non-zero values.

Bitmap
𝑛2

8
+ 𝑠𝑛2𝑒 𝑛2

8
is storage for the bitmap.

𝑠𝑛2𝑒 is storage for non-zero val-

ues.

Run-length ≈ 𝑛𝑙𝑜𝑔2 (𝑛)
8

+
𝑠𝑛2

2𝑙𝑜𝑔2𝑛

8𝑙
+ 𝑠𝑛2𝑒

The
𝑛𝑙𝑜𝑔2 (𝑛)

8
is storage for

number of RLs in each row.

𝑠𝑛2
2𝑙𝑜𝑔2𝑛

8𝑙
is storage for (start,

num) pairs assuming an aver-

age run length 𝑙 .

Table 1: Storage for Different Sparse Matrix Formats

array (similar to CSR_Vals). An RL_Rows array contains the number

of runs in each row (
𝑛𝑙𝑜𝑔2 (𝑛)

8
bytes).

Figure 3 plots the storage needs for a 1024 by 1024 matrix holding

16-bit data values at different sparsity levels under several storage

formats, normalized to the storage needed by the uncompressed

format. Bitmap and RL (with 𝑙 = 8) formats reduce the storage

compared to the uncompressed format at nearly all sparsity levels

while other formats become attractive at higher sparsity.

Performance Efficiency: Figure 4 plots the normalized dynamic

instruction counts of the matrix-vector multiply algorithm imple-

mented atop various sparse formats (normalized to the uncom-

pressed version). For illustration, we used a synthetic 1024 by 1024

matrix with average non-zero run-length of 4. At lower sparsity

levels (≤ 50%), the Bitmap and RL formats incur significantly high

metadata processing overhead, resulting in much higher instruction
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Figure 3: Storage Needs for a 1K by 1K Sparse Matrix

Figure 4:Matrix-VectorMultiplication:Dynamic Instruction
Counts

count than the uncompressed format. In contrast, these formats are

the most efficient in terms of storage as shown by Figure 3.

Energy Efficiency:Ultra-low power sensing devicesmust achieve

very low energy & power goals while implementing machine-

learning algorithms. We estimate the energy of sparse-matrix com-

putation as a sum of three sources: (i) energy of memory accesses,

(ii) energy ofmatrix-based computations, and (iii) processor pipeline

energy (instruction fetch, decode, etc). While uncompressed for-

mats incur highermemory energy, compressed formats incur higher

processor pipeline energy. Figure 5 plots the energy breakdown

of the matrix-vector algorithm across various storage formats at

different sparsity levels (Section 5 provides details of energy costs).

While compressed formats lower the memory access energy, some

formats incur significant processing energy. In such formats, econ-

omy of storage can be lost due to expensive computation. Thus,

a judicious trade-off must be made in determining how to store

sparse data, and how to process it.

3 EXPRESS
3.1 Overview
ExPress is motivated by this storage–computation–energy trade-off

at low sparsity. ExPress simultaneously exploits the storage reduc-

tion of sparse formats and the computational simplicity of the un-

compressed format to achieve overall energy reduction. It does so by

expanding the compressed data and supplying expanded data to the

CPU. Expansion enables computational kernel software to become

compression format-agnostic and the CPU does not incur cycles

processing metadata. This leads to both performance improvement

and energy saving. At the same time, ExPress supplies mask bits to

the CPU so that expansion does not result in unnecessary compu-

tations. Thus even though ExPress expands the compressed matrix,

the energy incurred by computations (by computations, we mostly

refer to multiplication operations that are prevalent in DNN work-

loads) is limited to useful non-zero data. Thus ExPress provides a
memory-side substrate to orchestrate sparse computations that are

simultaneously performance, energy and storage-efficient.

Figure 6 shows the system organization of a typical low-power

MCU (diagram on the left) as well as a high-performance processor

with ExPress(diagram on the right). The MCU is provisioned with

a small amount of on-chip SRAM backed by non-volatile storage

(typically flash memory). In the MCU, ExPress is integrated such

that it can access the SRAM. We expect an on-chip interconnect

throughwhich ExPress can access the SRAM for (pre)fetchingmatrix

contents
1
. Memory read/write requests issued by ExPress are routed

by the interconnect to the correct SRAM banks as per the chip-level

memory map.

The high performance processor includes a cache hierarchy

followed by off-chip memory (typically DRAM). ExPress is inte-
grated into the L1D cache so that it can leverage the𝑇𝐿𝐵 to convert

software-programmed virtual to physical address translation and

issue memory requests for matrix contents.

ExPress is internally organized into a front-end (𝐹𝐸) and a back-

end (𝐵𝐸). The 𝐹𝐸 is responsible for CPU-side interactions: handling

configuration writes from the CPU and supplying data to the CPU

in response to buffer load requests. By design, the front-end is

unaware of the sparse format used. The 𝐵𝐸 is aware of the sparse

format and uses the metadata to fetch values and provide their

indices to the front-end. It issues loads of matrix data and metadata

from the memory system to enable the 𝐹𝐸 assemble data buffers in

a timely fashion. The 𝐹𝐸 and the 𝐵𝐸 operate in a decoupled manner

synchronized by a control unit that starts or throttles the 𝐵𝐸 based

on availability of space in the buffers. This separation between a

sparsity-unaware front-end and sparsity-aware back-end enables

the front-end portion of the design to be reused while only the

back-end needs to be updated to support newer sparse formats.

3.2 ExPress Front-End
We first describe the programming of the 𝐹𝐸 followed by its design.

Programming Model and Operation: The ExPress 𝐹𝐸 is re-

sponsible for matrix metadata configuration, and coordination with

the CPU. Initially, the 𝐹𝐸 has to be configured by software to point

the 𝐹𝐸 to matrix metadata stored in memory. This programming is

performed by writing to a set of memory-mapped registers (MMRs)

in the 𝐹𝐸. Values programmed into these configuration registers

control the address generation and termination logic. Below, we

list the MMRs needed:

• 𝑀_𝑁𝑢𝑚_𝑅𝑜𝑤𝑠: Number of rows of sparse matrix𝑀 .

• 𝑀_𝑁𝑢𝑚_𝐶𝑜𝑙𝑠: Number of columns of sparse matrix𝑀 .

• 𝑆𝑝𝑎𝑟𝑠𝑒_𝐹𝑜𝑟𝑚𝑎𝑡 : Format in which the sparse matix is stored

(one of CSR, Bitmap, Run-Length in our evaluation)

• 𝑀_𝑅𝑜𝑤𝑠_𝐵𝑎𝑠𝑒 : Base address of metadata array that provides

aggregate information about each row.

1
Such on-chip interconnects are the norm in MCUs to allow DMA (Direct Memory

Access) accesses to SRAM and we do not consider this as a new requirement for ExPress
integration.
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Figure 5: Matrix-Vector Multiplication: Energy Breakdown

Figure 6: System Organization with ExPress

• 𝑀_𝐶𝑜𝑙𝑠_𝐵𝑎𝑠𝑒 : Base address of metadata array that provides

information about non-zero locations in each row.

• 𝑀_𝑉𝑎𝑙𝑢𝑒𝑠_𝐵𝑎𝑠𝑒 : Base address of the array holding non-zero

values of the matrix.

• 𝐸𝑙𝑒𝑚𝑒𝑛𝑡_𝑆𝑖𝑧𝑒 : Size of each data value in the values array (to

distinguish 8-bit/16-bit/32-bit/etc data types)

• 𝑆𝑡𝑎𝑟𝑡/𝑆𝑡𝑜𝑝: This bit is set to start or stop the hardware op-

eration by the CPU.

Figure 7 provides an example of how the configuration registers

are set up for CSR, Bitmap and Run-Length formats using the 3 ×
3 matrix 𝑀 shown at the top of the figure. For the CSR format,

the 𝑀_𝑅𝑜𝑤𝑠_𝐵𝑎𝑠𝑒 register contains the address of the CSR_Rows
array;𝑀_𝐶𝑜𝑙𝑠_𝐵𝑎𝑠𝑒 the address of theCSR_Cols array.With Bitmap

representation, the𝑀_𝑅𝑜𝑤𝑠_𝐵𝑎𝑠𝑒 register contains the address of

an array that contains bit offsets at which each row’s bitvector is

stored.𝑀_𝐶𝑜𝑙𝑠_𝐵𝑎𝑠𝑒 contains the address of the bitmap of 1s and

0s to mark non-zero/zero locations in the matrix. In Run-Length,

𝑀_𝑅𝑜𝑤𝑠_𝐵𝑎𝑠𝑒 points to an array that contains the number of run-

lengths in each row.𝑀_𝐶𝑜𝑙𝑠_𝐵𝑎𝑠𝑒 points to an array describes each

run-length as a pair: (number of non-zeroes in the run, starting

column index of the run). In all formats,𝑀_𝑉𝑎𝑙𝑢𝑒𝑠_𝐵𝑎𝑠𝑒 contains

the address of the non-zero values array.

ExPress provides hardware support for expansion of sparse ma-

trices. It reads sparse matrix metadata and constructs buffers that

are filled with either the non-zero values from the sparse matrix

or zeroes. For each column of each row, ExPress determines if the

corresponding value is non-zero (value present in𝑀_𝑉𝑎𝑙𝑢𝑒𝑠 array)

or zero using the specified matrix metadata. The CPU simply loads

values from these buffers and multiply-accumulates them into the

output vector. These buffer loads are performed via the normal

load-store interface of the CPU using addresses assigned to these

buffers. In our design, we assume a vector-wide load-store interface

for high performance applications but ExPress design can work

with scalar load-store interfaces also
2
. The software uses a fixed

load address to load from. Whenever the CPU performs a load, the

𝐹𝐸 updates its buffer state to determine when the buffer has been

completely drained by the CPU. If the 𝐹𝐸 is designed with multiple

buffers, then upon the CPU draining one buffer, the 𝐹𝐸 switches to

the next ready buffer. In the single-buffer design, as buffer entries

are read, these slots are filled with the next chunk of data. In this

sense, the 𝐹𝐸 offers a streaming FIFO interface to the CPU. If the

CPU performs a load when the buffer is not ready, then the 𝐹𝐸

stalls the load. In both the MCU and High-performance processor

integration, it is assumed that the CPU can be stalled due to a long

latency memory access.

Eliminating Wasteful Multiplications:While ExPress elimi-

nates the software overhead of processing the metadata, it increases

the number of multiplications performed by the CPU since it sup-

plies both non-zeroes as well as zeroes. This is wasteful especially

from an energy perspective in embedded systems. In order to miti-

gate this, the 𝐹𝐸 supplies a hint in the form of a bit-vector to the

core alongside the buffer data indicating which buffer elements are

non-zero or zero. This is depicted in Figure 8. Using the bitmap

representation as example, the figure shows the 𝐹𝐸 expanding a

chunk of data by inserting two zeroes and supplying mask bits to

the core in addition to the actual data via the buffer.

In our design, this mask-vector is supplied as a side-band signal

to the load-store interface of the CPU. The CPU uses the mask to

2
In fact, our design works even better with scalar loads as there is less pressure on the

memory system to return a large number of values per loop iteration.
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Figure 7: Metadata Configuration for ExPress

Figure 8: ExPress operation showing mask bit-vector

Figure 9: ExPress Front-End Pipeline

enable/disable operations on individual elements of the loaded data.

While this causes an idle slot in case an operation is skipped, as our

results demonstrate, ExPress simultaneously improves performance

and lowers energy by a combination of compressed storage, and

expanded, zero-skipped computations.

𝐹𝐸 Design: The 𝐹𝐸 is implemented with 𝑁 vector-sized buffers

where 𝑁 is a design-time parameter. 𝑁 >= 2 permits ExPress to
prefetch data and fill buffers ahead of time. 𝑁 = 2 provides double-

buffer arrangement. The 𝐹𝐸 and 𝐵𝐸 work the memory pipeline

managed by a control unit. Figure 9 describes the design of the

ExPress front-end.

The first stage of the pipeline reads the next non-zero column

index (supplied by the back-end, discussed in Section 3.3). Next,

it calculates the gap between this index and previous index. This

requires a comparator. If there is no gap, then the value of the matrix

element at this index is read (which is supplied by the back-end).

If a gap is found, then a zero value is inserted into the pipeline. In

the final fill-buffer stage, the value (either the matrix value from

memory or zero) is written to the next free slot in the output buffer.

The control unit maintains the current state of the 𝐹𝐸 to issue

pipeline control signals. It also tracks the current read and write

positions in the buffers so that CPU read requests are serviced

in correct order. The control unit also tracks buffer empty/full

conditions so as to stall CPU load requests (when no ready buffer is

available), skip issuing new memory read requests when all buffers

are full, etc. This internal state requires a single 32-bit register inside

the control unit (active read buffer id, active write buffer id, next

read slot in read buffer, next write slot in write buffer, empty read

buffers flag, full write buffers flag).

When the pipeline is working at its maximum efficiency, a new

value is filled every cycle. This throughput is sufficient to feed a

CPU operating at the same frequency even if the CPU uses SIMD

execution with 8 element-wide vectors. We limit our analysis to a

maximum of 8 element vectors as wider data paths are area and

power-expensive and rarely implemented in low-power embedded

systems.

3.3 ExPress Back-End
ExPress Back-End (𝐵𝐸) fetches metadata and data for the front-end

by interpreting the sparsity format that has been programmed into

the Sparse_Format memory-mapped register. Figure 10 describes

the pipeline design of the ExPress back-end. Rather than describing

the 𝐵𝐸 design and operation for each format separately, we have

described a generic pipeline-based organization with some pipeline

stages providing format-specific functionality.

The first stage calculates the next metadata address to read from.

This address calculation depends on the format used and the cur-

rent read position. For example, in the Bitmap format, the next

address is simply the next 32-bit word in the array pointed to by

M_Cols_Base register. With CSR and Run-Length formats, the next
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Figure 10: ExPress Back-End Pipeline

address depends on whether the current read position is the end of

a row: if it is, then the next address is the next entry in the array

pointed to by M_Rows_Base; if the read is in the middle of a row,

then the next address is the next entry in the array pointed to by

M_Cols_Base. The calculated address is used to issue a memory

read request in the second stage. In the third stage, the next data

value is read from memory using an offset from the address held

in M_Vals_Base. In all formats, the address generation to access

the values array is trivial: the 𝑖𝑡ℎ access is simply to the address

𝑀_𝑉𝑎𝑙𝑠_𝐵𝑎𝑠𝑒 + 𝑖 × 𝐸𝑙𝑒𝑚𝑒𝑛𝑡_𝑆𝑖𝑧𝑒 . The control unit maintains nec-

essary state – the current read positions into the rows, columns and

values arrays. In the fourth stage, the next non-zero column index

is calculated. The calculation performed is a function of the format

used: in CSR, the column index is explicitly read from memory

and no calculation is needed; in Run-Length, the column index is

an increment of one from the current (previous) column index in

the current run; in Bitmap, the 32-bit column metadata bitvector

is scanned for the next ’1’ bit and its bit position is converted to

column index. In the final stage, the calculated column index value

and the corresponding data value are supplied to the front-end by

writing these values to registers. The control unit generates signals

to control the pipeline movement and to stall the pipeline if memory

responses are delayed or if the next non-zero column index could

not yet be computed (this can occur in the Bitmap format - where

a string of 0s-only words may be encountered).

The 𝐵𝐸 works with the underlying memory system to issue read

requests and to collect read data. In the MCU integration, the 𝐵𝐸

issues requests to the on-chip RAM via an on-chip interconnect. In

the high-performance processor integration, the 𝐵𝐸 issues requests

to the L1D cache. If the request is an L1D miss, then the usual cache

miss processing is carried out to fetch the contents.

Depending on underlying cache hierarchy and memory orga-

nization, the 𝐵𝐸 may reorder memory requests to improve spatial

locality. In particular, on DRAM-based systems, the 𝐵𝐸 may em-

ploy techniques such as prefetching data from open row-buffers to

reduce memory access latency and improve the overall efficiency

of the memory system.

3.4 Other Considerations
Multi-core Support: ExPress is designed to work on a per-core

basis. In multi-core implementations of matrix algorithms, per-core

ExPress instances can be configured to accelerate respective cores. It
is straightforward to extend ExPress to support matrix sub-blocking

so that each per-core instance manages supplying data accessed

by one core. In a multi-core implementation, sub-block dimensions

have to be programmed into each ExPress instance (rather than the

entire matrix dimensions).

Other Compression Formats: Like most prior works, ExPress
focuses on several commonly used formats: CSR, Bitmaps and Run-

Length. Support for other compression formats can be integrated

into ExPress with relatively minor changes only to the step that

determines the location of the next non-zero element in a row,

column or sub-block. The rest of the architecture including the

streaming buffers and memory-side back-end remain the same.

Saving and Restoring ExPress State: The ExPress state may

be treated as part of the process state of the process that is currently

using ExPress. If the process is context-switched out, then the state

of ExPress could be saved along with the CPU state (PC, stack,

etc). ExPress state comprises the filled-but-unread buffers and the

metadata bookkeeping registers. The restoration of process state

is similar: the unread buffers and state of ExPress metadata are

restored. Once this is completed, the start-bit may be set to resume

operation.

Like the handling of floating-point state, an optimization is to

let the OS determine if ExPress is being used by the current process.

If it is not being used, then reading and saving ExPress state can be

skipped, thereby saving context-save and restore latency for such

processes.

Exceptions: ExPress is expected to be correctly configured by

the application with correct base addresses of data and metadata

arrays. Incorrect configuration can result in illegal memory accesses.

Detection and management of such exceptions is outside the scope

of ExPress and should be handled by the application core.

Cache Coherence and Buffered Data: Buffered data is not

expected to go stale. While a thread is consuming matrix data for

spMV or spMspM, it is not expected that the same or another thread

of the process modifies these values. If such a scenario did arise,

then the ExPress 𝐵𝐸 could be augmented to participate in cache

coherence. It may also be observed that ExPress does not modify

any data and therefore need not issue ownership requests.

Output Compression: At present, ExPress is designed for con-

structing input dense buffers for the CPU to load. The creation of

compressed outputs is performed in software. It is possible to ex-

tend ExPress such that it can take a dense buffer from the CPU (via

a vector-store to a ExPress buffer address) and suitably re-format

and write the compressed output to memory.

Support for High-Dimensional Tensors:While this work ex-

plores ExPress in the context of the 𝑠𝑝𝑀𝑉 algorithm, it is straight-

forward to extend the concept of expansion to cover higher di-

mensional data such as tensors. If the neural network algorithm

executing on the processor is operating in chunks of 3D volumes of

feature maps, then ExPress buffers should be constructed to supply

these chunks.
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3.5 Area Estimate
The area of ExPress is a sum of the logic gates of the control unit

and storage required by the 𝐹𝐸 and the 𝐵𝐸.

𝐹𝐸 Area: The 𝐹𝐸 comprises CPU-side buffers (𝑁 ×32𝐵), memory-

mapped registers (8 × 4𝐵), internal state registers (4𝐵), pipeline

registers (8𝐵 between successive stages) and column-index & value

storage between the 𝐵𝐸 and 𝐹𝐸 (2×4𝐵). With a single buffer (𝑁 = 1)

of size 32B, the total storage is less than 100𝐵. Coupled with a

comparator in the control unit for gap calculation, we obtained an

area estimate of 0.03𝑚𝑚2
using CACTI [30] with 32nm technology.

𝐵𝐸 Area: The 𝐵𝐸 comprises control unit state for read pointers

(4𝐵 each for row, column and values arrays), pipeline registers

(8𝐵 between successive stages) and logic for address generation

(adder), end-of-row comparison (comparator) and column index

computation (priority encoder & shifter). The total storage needed

is less than 50𝐵. The area estimate for the 𝐵𝐸 is 0.03𝑚𝑚2
.

The total area for ExPress logic and storage is an estimated 0.05

𝑚𝑚2
. In comparison to a RISCV 32-bit 3-stage in-order core with

a vector unit with 32 32B vector registers without floating/double-
precision support, this is less than 9% area overhead. In more so-

phisticated pipelined cores with floating point support, the area

overhead of ExPress is insignificant.

4 PROGRAMMING MODEL
In order to leverage ExPress, it has to be configured with matrix

metadata. This is done by programming memory-mapped registers.

These registers provide the following configuration details (to be

supplied by software):

• 𝑀_𝑁𝑢𝑚_𝑅𝑜𝑤𝑠: Number of rows of sparse matrix𝑀 .

• 𝑀_𝑁𝑢𝑚_𝐶𝑜𝑙𝑠: Number of columns of sparse matrix𝑀 .

• 𝑆𝑝𝑎𝑟𝑠𝑒_𝐹𝑜𝑟𝑚𝑎𝑡 : Format in which the sparse matrix is stored

(one of CSR, Bitmap, Run-Length in our evaluation)

• 𝑀_𝑅𝑜𝑤𝑠_𝐵𝑎𝑠𝑒 : Base address of metadata array that provides

aggregate information about each row.

• 𝑀_𝐶𝑜𝑙𝑠_𝐵𝑎𝑠𝑒 : Base address of metadata array that provides

information about non-zero locations in each row.

• 𝑀_𝑉𝑎𝑙𝑢𝑒𝑠_𝐵𝑎𝑠𝑒 : Base address of the array holding non-zero

values of the matrix.

• Element sizes of 𝑀_𝑅𝑜𝑤𝑠 , 𝑀_𝐶𝑜𝑙𝑠 and 𝑀_𝑉𝑎𝑙𝑢𝑒𝑠 Arrays:

Quantization and pruning of ML networks leads to different

reductions – such as 16-bit values or 8-bit column indices

(in small-sized matrices or in small run-length encodings).

Thus ExPress is programmed with the sizes (in bytes) of the

elements of the various arrays that it accesses. This allows

ExPress to seamlessly support various configurations of sup-

ported sparse formats.

• 𝑆𝑡𝑎𝑟𝑡 : This bit is set last to trigger the start of the hardware

operation.

Software is expected to set up these configuration registers with

the 𝑆𝑡𝑎𝑟𝑡 bit being the last one to be set.

4.1 Accessing Data Buffers In Computational
Kernels

The ExPress data buffer is memory-mapped to a fixed address. Note

that even if ExPress is implemented with multiple physical buffers

for "double buffering" operation, the CPU software accesses the

current buffer via the same address. In this sense, ExPress offers a
streaming FIFO (First-In First-Out) interface to the CPU: the CPU

software need not keep track of which buffer to read from. The

software always issues a load (or vector-load) from a fixed address.

ExPress routes this load request to the correct buffer and returns

load data.

Putting it all together, Figure 11a compares and contrasts the tra-

ditional software-based spMV with ExPress-based implementation

shown in Figure 11b. The traditional software implementation uses

the Run-length format.

For simplicity of illustration, both codes are shown as scalar

implementations while implementations may use RISCV vectors to

accelerate the kernel. It may also be noted that vectorizing the soft-

ware version is non-trivial/has lower gains due to the dependence

on processing the run-length metadata before the actual multipli-

cations can be vectorized. The code on the left is the traditional

spMV where software processes run-length metadata comprising

number of runs in each row (𝑀_𝑅𝑜𝑤𝑠), and description of each run

(𝑀_𝐶𝑜𝑙𝑠). The code outline on the right is the ExPress-accelerated
version of spMV. Relevant changes are highlighted as blue text. The
volatile pointer variable 𝐵𝑈 𝐹𝐹𝐸𝑅 is initialized to the address of the

ExPress buffer3. Next, before executing the main kernel, ExPress is
initialized and started. These initialization functions (not shown for

brevity) simply perform a series of writes to ExPress configuration
registers. The main kernel of the ExPress-version looks very simi-

lar to the simple uncompressed matrix-vector algorithm. The only

change is the way that values from𝑀 are accessed. In the ExPress-
version, these values are accumulated into buffers by ExPress and
software reads them from the buffer using the 𝐵𝑈 𝐹𝐹𝐸𝑅 pointer

4
.

It may be observed that metadata overheads have been entirely

eliminated by ExPress leading to simpler more efficient inner loops.

While the above description used the matrix-vector kernel, the same

programming model applies to other sparse-matrix based kernels

such as convolutions.

5 EXPERIMENTAL EVALUATION
We evaluate ExPress on both low-power MCUs as well as high-

performance processors using DNN, and synthetic workloads ex-

ecuted on a 32-bit RISCV ISA using a heavily modified Spike [15]
simulator.

5.1 System Configurations
We evaluate ExPress with two different types embedded systems

configurations. Tables 2 and 3 describe the system configurations

of the low-power micro-controller and high-performance processor

respectively. Both configurations use the 32-bit RISCV [11] base

architecture along with vector (V), compressed (C), atomic (A),

multiply (M), floating (F) and double precision (D) extensions.

Themicro-controller (MCU) uses an in-order three-stage pipeline

implementation. In particular, loads that do not complete in a single

cycle stall the pipeline. The vector unit is not pipelined. The mem-

ory comprises on-chip SRAM. All the code, global data, stack and

dynamically allocated data reside on SRAM. The high-performance

3
In our experiments, we mapped the ExPress buffer to address 0𝑥𝐶000_1000.

4
The volatile attribute ensures that each read goes to memory.
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(a) Traditional Run-Length Software version of spMV (b) ExPress-Accelerated version of spMV

Figure 11: Comparison of spMV codes

Processor Values

Core RISCV with IMACFDV Extensions

Frequency = 200 MHz

In-order 3-stage

Vector width (VL) = 8 Elements

Element Size (SEW) = 32 bit

Vector Arithmetic Latency = 4 cycles

ExPress Buffer size = 32B

Supports CSR, Bitmap and RL formats

MEM SRAM, 1-cycle access time

Energy (pJ) Instruction Fetch: 5

16-bit Multiplication: 5

SRAM Access: 30

Table 2: System Parameters: Low-power Micro controller

processor (HP) uses a similar core microarchitecture. Unlike the

MCU, it is backed by a cache-based memory hierarchy.

5.2 Workloads
We use several matrices corresponding to the fully connected (FC)

layers of trained DNNs, and synthetically generated matrices in

order to evaluate ExPress. The fully connected layer of DNNs per-

forms matrix-vector multiplication before the final classification

is performed. We leveraged the quantized weights matrix of this

layer from a variety of networks: MobileNet [22], MobileNetV2 [44],

DenseNet [23], ResNet [20], ResNetV2 [21], andVGG16, &VGG19 [45].

Table 4 lists attributes of interest for these matrices. As these net-

works are trained to classify input images into one of a set of 1000

pre-trained classes, the number of columns for each network’s FC

layer is 1000. As we will see in Section 6, a combination of average

sparsity and average run-length greatly affect the performance of

sparse-format-based software implementations.

Processor Values

Core RISCV32 with IMACFDV Extensions

Frequency = 2 GHz

In-order 3-stage

Vector width (VL) = 8 Elements

Element Size (SEW) = 32 bit

Vector Arithmetic Latency = 4 cycles

ExPress Buffer size = 32B

Supports CSR, Bitmap and RL formats

L1 D-Cache 32KB, 4 way, 1 cycle

L2 Cache 128KB, 8 way, 5 cycles

DDR LPDDR4-1600

tCAS-tRCD-tRP

11-11-11

2KB row-buffer

Table 3: System Parameters: High Performance Processor

DNN Size Sparsity(%) Run-Length

DenseNet 1024 × 1000 49 11.2

MobileNetV2 1280 × 1000 11 8.9

MobileNet 1024 × 1000 30 3.3

ResNet 2048 × 1000 53 1.9

ResNetV2 2048 × 1000 34 3.9

VGG16 4096 × 1000 12 7.8

VGG19 4096 × 1000 12 7.9

Table 4: DNNWorkload Sparsity Characteristics

In order to analyze the performance of our accelerator more

carefully, we generated 28 synthetic matrices comprising 4 different

sizes (64 by 64, 256 by 256, 1024 by 1024 and 4096 by 4096) and 5

different sparsity levels (10% through 70% in steps of 10%). We limit
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our attention to these configurations as they correspond to DNN

weight matrices in terms of both sizes and sparsities.

5.3 Simulation Details
We used a heavily modified version of Spike simulator [15] for our

work. Spike models the 32-bit RISCV architecture along with sev-

eral extensions that we required for our work, including vectors,

compressed, atomic, multiply, floating and double-precision exten-

sions. Further, Spike models a simple 3-stage in-order pipeline that

closely resembles the implementation of most embedded micro-

controllers. For simulating the high-performance processor, we

incorporated several modifications to the baseline simulator includ-

ing a detailed DRAM memory model and processor wait cycles.

We also incorporated configurable instruction latency for vector

instructions. ExPress is implemented as a detailed timing C model

integrated at the load-store interface and occupying the address

range (0𝑥𝐶0000000, 0𝑥𝐶0002000). It supports expanding from CSR,

Bitmap and RL compression formats in a timing-accurate manner

– each clock cycle, it uses a state machine to take suitable action

(respond to CPU read request, store memory read response into

buffer, issue next memory read request, etc). In addition, we ex-

tended Spike to support additional performance counters such as

processor wait cycles due to memory, and memory access statistics.

6 RESULTS
We first present the performance results of ExPress on the em-

bedded MCU configuration followed by its results on embedded

high-performance processors. In terms of notation, ExPress-Bitmap

denotes ExPress working with Bitmap format, and similarly ExPress-
RL and ExPress-CSR.

6.1 ExPress on MCU
Figure 12 plots the performance improvement achieved by ExPress
over respective software sparse codes on DNN fully connected

layers. On average, ExPress improves performance by 43%, 11%

and 33% over Bitmap, CSR and RL-based software codes. ExPress-
Bitmap consistently outperforms Software-Bitmap which is inter-

esting since Bitmap is a commonly used compression format in

several accelerator-based approaches (such [27]). Programmable

software-only DNN approaches should consider this while choos-

ing the appropriate compression format. ExPress-RL almost always

outperforms RL except in denseNet. Referring to Table 4, denseNet
has a high average run-length (11.2) which reduces the software

overheads of processing run-length metadata. This result also re-

veals that run-length coding has significant performance variation

that is dependent on the average run-length of the input. On resNet
which has the lowest average (1.9), ExPress-RL outperforms Ex-
Press-Bitmap. ExPress-CSR exhibits the least gain among the three

formats. This is explained by Figure 4 which shows that CSR has

very low metadata overhead. Thus, when the sparsity is reason-

ably high, software-CSR performs better than ExPress-CSR since the

software version avoids redundant processing altogether. denseNet
and resNet have higher sparsity (49% and 53% respectively) and

are thus able to take advantage of the CSR formatted metadata

more effectively. However, CSR incurs higher metadata storage

overheads which become more pronounced with higher quantiza-

tion (such as 8-bit). For example, at 50% sparsity in a 1024 × 1024
matrix comprising 8 − 𝑏𝑖𝑡 data, CSR requires more storage than a

fully uncompressed matrix. Thus, depending on system constraints,

one or the other format may be better suited. ExPress performs

consistently – it is able to deliver performance improvements in 18

out of 21 configurations evaluated.

Energy Savings: While ExPress uses the same underlying stor-

age format as the respective sparse format and thus incurs the

same memory energy, it saves energy by removing instruction

execution overheads. Unlike software codes that incur cycles to de-

code/decompress sparse data, with ExPress, the CPU executes fewer

total instructions thereby saving energy. Figure 13 plots the en-

ergy saved by ExPress. Tracking performance improvement results

presented above, energy savings are the highest in ExPress-Bitmap

owing to the high metadata overheads of the Bitmap format (aver-

age saving of 15%(. Similarly, ExPress-CSR achieves only a modest

average improvement as Software-CSR is quite metadata-efficient.

6.2 ExPress on High-Performance Processor
Figure 14 plots the performance improvement achieved by ExPress
over traditional software sparse codes on HP cores running DNN

spMV operations. On average, ExPress performs 43%, 37% and 6%

better than traditional Bitmap, Run-length and CSR formats respec-

tively. In general, results on HP CPUs follow similar trends as on

MCU CPUs. Software-CSR outperforms ExPress when sparsity is

higher while ExPress performs better than the other two formats

consistently.

In our design, the ExPress hardware issues memory accesses

in parallel with CPU computations, thus hiding memory access

latencies. However, since the CPU now performs uncompressed

matrix computations, it will be performing computations over all

values (even though zero values are skipped, a wasted cycle is still

incurred). The sparsity determines if the memory savings outweigh

computational overhead or not. In addition to sparsity, the size

of the matrix also determines the trade-off. At a given sparsity,

larger matrices involve more redundant computations than smaller

matrices (see Figure 15 and the discussion in section 6.3).

Thus, it is necessary to understand the sparsity of data in a given

application and the size of the data to determine if a design like our

ExPress is beneficial or not.

6.3 Analysis on Synthetic Matrices
In this section, we evaluate ExPress on several synthetic matrices

of different sizes and sparsities to understand the limits of ExPress.
Since ExPress performs computations in uncompressed format, as

sparsity increases, wasted computational cycles can outweigh the

gains achieved by metadata overhead elimination. Figure 15 shows

the performance improvement of ExPress as compared to respec-

tive software sparse formats for two matrix sizes (i.e. 64x64 and

2048x2048) at different sparsity levels. Unsurprisingly, it can be

seen that the performance benefit of ExPress drops with increase in

sparsity. As the matrix size increases, performance drops at a rela-

tively faster rate with increase in sparsity because of the increase

in wasted cycles. It may also be observed that ExPress gains at least
20% improvement over both Software-Bitmap and Software-RL even
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Figure 12: ExPress on MCU CPUs: DNN workloads
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Figure 13: ExPress on MCU CPUs: Energy Saving

at 60% sparsity. Where storage constraints are severe (many em-

bedded MCUs have as little as just a few KB of memory), CSR is

not a viable compression format and other formats have to be used.

At lower sparsity, CSR incurs higher metadata storage overhead

compared to the other formats since it records the absolute column

index of each non-zero value (for example, in a 1024 × 1024 matrix,

each column index requires 10 bits which may be stored in memory

using a 16 bit data type). In such scenarios, ExPress offers a viable
option to improve performance while achieving low storage.

6.4 Compute-Memory Overlap
ExPress improves compute–memory overlap by issuing memory

requests in parallel to CPU computations. By provisioning more

than one buffer, it is possible to improve this overlap further and

hide memory wait cycles. With 𝑁 = 2 buffers, we noticed 1 − −2%
performance improvement over the single-buffer configuration. In

our experiments, as the core performs scalar operations, a single

buffer is largely sufficient to meet the load bandwidth of the CPU.

However, we expect higher gains when ExPress is deployed in

multi-core or vectorized systems where the processing elements

can consume several data elements per cycle and thus multiple

buffers can be beneficial.

ExPress offers another benefit: vectorization. By rendering un-

compressed matrices, it becomes trivially easy to vectorize matrix

kernels unlike kernels that are based on compressed formats. We

implemented a vectorized version of ExPress-CSR and compared

its performance improvement over vectorized-software-CSR. For
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Figure 14: ExPress on HP CPUs: DNN workloads
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Figure 16: ExPress on Vectorized HP CPUs: DNN workloads

a 2048 × 2048 matrix with 30% sparsity, ExPress-CSR improved

performance by 56% (in contrast, scalar ExPress-CSR improved per-

formance by only 17% over scalar-software-CSR). It can be seen in

Figure 16 that the vectorized version of DNN workloads has similar

performance improvements as scalar counterparts.

7 RELATEDWORKS
Accelerating spMV operations has received attention from both

the hardware and software communities. On the hardware side,

works propose hardware acceleration of the entire computation:

some of these works include a CAM-based accelerator [48], and

accelerator for very large spMV [43]. The work in [43] proposes

a Two-Step spMV algorithm and a memory-based accelerator to

accelerate such computations on very large, very sparse graphs.

Our work is different: we aim to solve the memory latency problem

faced by embedded system-based matrix codes. Unlike works that
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aim to move the entire computation to a dedicated accelerator, our

goal is simply to reduce the decompression bottleneck faced by

software codes running on traditional cores.

Interest in DNN based accelerators have seen a rise in recent

years. There are too many different hardware/software implemen-

tations to include here. Many are based on specialized accelerators

based on either dataflow or tensor/systolic arrays. Many of these

systems lack flexibility or reconfigurability. A recent paper [40]

focuses on support for flexible sparse matrix and vector multipli-

cations. Sparse data is represented as bit-vectors and dataflow like

Multiply-Accumulate units are configured based on the nonzero val-

ues in data. Authors of [34] propose a programmable accelerator to

optimize the execution for new and emerging ML applications. The

accelerator (VTA) is viewed as a fetch-load-compute-store pipeline

to dispatch instructions to load (obtain input, weights and bias

tensors from DRAM), compute (GEMM operations) or store (store

results of compute in DRAM). Our interest is in the use of general

purpose RISC-like processing units with minimal extensions to the

ISA and hardware complexity.

There are several works that attempt to improve the performance

of sparse matrices for scientific applications. Authors of [5] pro-

posed a parallel sparse matrix algorithm based on SUMMA used

in BLAS library and parallelized the sparse matrix multiplication,

while we used ExPress to expand low-sparsity matrices to remove

the metadata burden from CPU codes. Greathouse [17] proposed

an algorithm, CSR-Stream to compute sparse matrix-vector multi-

plication for smaller rows and CSR-Adaptive algorithm to choose

CSR-Stream instead traditional CSR compared to expansion from

COO format and parallelizing dense matrix workloads. In [1], au-

thors proposed a parallel Sparse Matrix-Sparse vector (SpMSpV)

algorithm that stores the product of Sparse matrix-vector based on

the row indices and later accumulates it, all by using buckets.

There have beenmany studies on near-data processing Processing-

In-Memory logic. More recent works focused on migrating com-

putations to PIM. Some older reports proposed migrating memory

intensive operations closer to memory including memory allocation

and garbage collection functions (see for example [9, 42, 47]). In one

interesting work, the authors propose creating memory gestures

(or macros) for some common operations involved in traversing

linked lists and avoid bringing intermediate nodes into processor

caches [12].

There are several studies on data prefetching. In [13], prefetch-

ing is based on calculating the stride from previous accesses and

prefetching is limited to tracking the stride for one data structure.

Streambuffers [26] prefetch sequential streams of cache lines even

if the fetched data is not utilized, while our work prefetches only

useful data elements and supplies them to processing elements.

Markov prefetching [25] supports correlation-based prefetching

by storing the history of missed address streams. Based on the

history of previous miss patterns, future misses are predicted and

prefetched. This method does not maintain any knowledge about

specific data structure strides or keep track of multiple structures

simultaneously. In [24], authors prefetched data based on distance

prefetching from slower memory into on-chip buffer in a heteroge-

neous memory architecture (consisting of faster 3D DRAMs and

slower non-volatile devices such as PCM). The distance is measured

in terms reuse distance. The authors propose to prefetch heavily

used pages from slower non-volatile memories into faster DRAM

based memories. This is in lieu of migrating pages completely into

faster memories.

In a different vein, there have been proposals on improving

compression of sparse matrices and proposed techniques include

CSR5 [31], hierarchical bit vectors [27], compression on top of

CSR [41], hierarchical coordinate format [29] and the structured

2-4 format [35]. Some proposed specialized hardware to compress

and decompress data for use by CPU (assuming that the CPU uses

conventional spMV software, relying on CSR formats) [41]. Our

work could be leveraged on top of these other formats in order to

offer both storage benefits as well as compute efficiency.

8 CONCLUSIONS
Matrix-Vector multiplication is inherent in many scientific, graph

analytics, machine learning and deep Neural network applications.

In many cases, the matrices are sparse, although the sparsity lev-

els (the fraction of data that are zeros) varies. There have been

many different ways of representing the sparse matrices to save the

storage needed for the data, including Compressed Sparse Rows

(CSR), Bitmap, Run-Length encoding and hierarchical representa-

tions. While these representations lead to storage savings, they can

lead to computational overheads since it is necessary to identify

the location of rows and columns of non-zero elements of the ma-

trix and match the corresponding vector elements needed for the

computations. This led us to investigate answers to two questions:

(1) is it better to represent matrices in dense format to improve

computational efficiency, even if this leads storage overheads, and

at what sparsity levels this approach is desirable, and (2) even if

matrices are represented using a sparse representation, is it better

to expand them internally to dense representations before computa-

tion proceeds, and at what sparsity levels is this approach desirable.

In response to the first question, we have shown that dense rep-

resentations are viable at certain sparsity levels and the sparsity

level depends on the size of the matrix. For example for 1024×1024
matrices dense representation outperforms CSR-based algorithms

for matrices with up to 40% sparsity. To answer the second question,

we designed a special hardware called ExPress that expands sparse
data into dense data so that the CPU performs dense Matrix-Vector

computations. We find that our approach outperforms CSR-based

algorithms for matrices with 40% sparsity or less, and outperforms

Bitmap based algorithms for matrices with 70% sparsity or less. In

addition to performance gains, ExPress also leads to energy savings

for matrices with low to moderate sparsities, as is the case with

many Deep Neural Network workloads. Further, ExPress simplifies

the programming model enabling vectorization and unrolling opti-

mizations. As future work, we are considering hardware support for

supplying only non-zero index-aligned values of matrix rows and

vector instead of expanding sparse matrices at higher sparsities.
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