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ABSTRACT 
In order to meet the ever-increasing speed differences between 
processor clocks and memory access times, there has been an 
interest in moving computation closer to memory. The near data 
processing or processing-in-memory is particularly suited for very 
high bandwidth memories such as the 3D-DRAMs. There are 
different ideas proposed for PIMs, including simple in-order 
processors, GPUs, specialized ASICs and reconfigurable designs. 
In our case, we use Coarse-Grained Reconfigurable Logic to build 
dataflow graphs for computational kernels as the PIM. We show 
that our approach can achieve significant speedups and save 
energy consumed by computations. We evaluated our designs 
using several processing technologies for building the coarse-
gained logic units. The DFPIM concept showed good 
performance improvement and excellent energy efficiency for the 
streaming benchmarks that were analyzed. The DFPIM in a 28 
nm process with an implementation in each of 16 vaults of a 3D-
DRAM logic layer showed an average speed-up of 7.2 over that 
using 32 cores of an Intel Xeon server system. The server 
processor required 368 times more energy to execute the 
benchmarks than the DFPIM implementation. 
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1 Introduction 
One of the major problems facing today’s computer systems is the 
disparate speeds between processor instruction cycles and memory 
access times. This is not a new issue as this timing mismatch was 
recognized and known as the memory wall [42]. Advances in 
processor clock rates and architectures have outpaced 
improvements in memory bandwidth and access delay.  Processors 
are running at 2 to 4 GHz range, while DRAM latency is 41.25 ns 
for the fastest DDR4 device from Micron [31]. The cache 
hierarchy in computer systems has been used to reduce the effects 
of the memory wall by providing fast access to data items on 
subsequent accesses. The use of multilevel memory caches, 
prefetching of data, multiple memory channels, and wide data 
paths mitigate the memory access delay, but there are still times 
when the processor must wait the 83 to 166 clocks for the 
requested data to arrive. Increasing computer system performance 
through multicore processors increases the pressure on the 
memory system as more memory requests are being generated. 
Conditions will occur where one or more cores must wait until an 
existing memory access completes before beginning its own 
memory access. With every fifth instruction [17] being a data 
request, the memory access delay and imperfect caching leads to 
high end servers being idle three out of four clocks [21]. Energy 
consumption of computer systems has been an increasing issue in 
recent years. 
Advances in silicon technology have dramatically decreased the 
energy per computation for the processor core. However, the 
energy for memory accesses is increasing to achieve improved 
bandwidth and latency to attempt to match processor performance 
[34, 35]. The memory system is an increasingly significant fraction 
of the computing system energy use [26]. A 64-bit external 
memory access requires approximately 100 times the energy of a 
double precision computation [20, 9, 25]. 
Energy is particularly important to both high-performance 
applications and emerging Big Data and Deep Learning 
applications.  For Exascale systems, the goals include a memory 
bandwidth of 4 TB/s at each node for 100,000 nodes with a 
maximum power budget of 20 MW [41]. Aggressive assumptions 
about memory technology improvements show that 70% of the 
power budget will be needed for memory accesses [43]. 
Demand for higher performance computer systems has pushed 
processor architectures to longer pipelines with multiple issue, out-
of-order capabilities and larger memory caches to supply data. 
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These high-performance microarchitectural features require an 
energy overhead that reduces the energy efficiency of the 
processor. A 4-issue core has six integer ALU, two load-store, two 
floating point, and one integer multiply-divide. Only 26% of the 
energy is used by functional units that generate algorithmic results.   
The remaining energy is consumed by cache hierarchy, network 
on the chip, instruction scheduling, renaming registers and other 
logic needed for out of order execution. 
Our architecture addresses both the execution and energy 
consumption. Execution performance is improved by moving 
computations closer to memory (that is, Processing in Memory) 
and eliminating traditional instruction pipelines with a 
reconfigurable graph describing a computation. Energy savings 
result from the elimination of instruction fetch/decode/issue 
cycles, cache memories and using lower clock frequencies. 
The rest of the paper is organized as follows. Section 2 describes 
the technologies that enabled our work. Section 3 provides an 
overview of our dataflow processing-in-memory (DFPIM) 
architecture. Section 4 provides details of our experimental setup. 
Section 5 contains results of our evaluation and discussions. 
Section 6 includes research that is closely related to ours and 
Section 7 contains conclusions of our study. 
 
2. Enabling Technologies 
Our architecture is enabled by (hybrid) dataflow model of 
computation, coarse-grained reconfigurable logic and 3D-stacked 
memories with room for processing-in-memory logic. 
2.1. Dataflow model represents a computation as a graph where 
the nodes represent operations on inputs received via the incoming 
edges and results are sent to other nodes via outgoing edges [3, 4, 
5, 23, 24]. In our system, we deviate from the pure dataflow model. 
We use load units to bring input data from DRAM memory into 
local buffers. There are delay operations in the dataflow graphs to 
balance and synchronize all paths in the graph, eliminating the 
need for additional inputs to trigger when data is consumed. The 
dataflow graph is ’executed’ only when all graph inputs for the 
next computation are available (not just inputs to nodes in the input 
layer). This pipelined execution also handles loop carried 
dependencies and simplifies memory ordering issues. 
Programmable state machines are used to implement looping 
structures within the dataflow graphs to increase graph execution 
independence from a host processor or controller. Figure 1 shows 
a dataflow graph representation of FFT. Detailed description of the 
operations is omitted due to space limitations. 
2.2. Coarse Grained Reconfigurable Logic (CGRL) is similar to 
FPGA, but the reconfigurability is at a functional block level and 
not at gate level. The CGRL fabric consists of functional units such 
as Integer ALUs, Floating Point Adders, Floating point 
multipliers, or other specialized functional units. The inputs of 
functional units can be connected to the outputs of other functional 
units, thus creating a dataflow graph representing a computation. 
Reconfiguring the input to output connections results in a new 
computational graph. We assume a partitionable crossbar 
interconnection network to communicate inputs and outputs. An 
example of a CGRL that is configured is shown in Figure 2.  

 
Figure 1: An Example Dataflow Graph for FFT 

2.3. Processing in Memory (PIM) using 3D DRAM. One approach 
to mitigating the memory wall for applications that do not work 
well with caches is moving the processing of the data closer to 
the data itself [36, 43]. The  advent of 3D-stacked DRAMS, which 
include a logic layer makes this Near Data Computing (NDC) or 
Processing-in-Memory (PIM).  
The close, physical proximity of the stacked layers combined with 
the low capacitance of the TSV interconnect [30] provides a faster 
and lower power communication path than the standard memory 
controller to DRAM DIMM path through sockets and PCB 
traces. The multiple independent channels and high-speed serial 
links provides 256 GB/s for HBM [22, 31] and 160 GB/s for HMC 
[19, 32, 35].  

 
Figure 2. An Example of CGRL Configuration 

3. Dataflow Processing In Memory (DFPIM) 
 
DFPIM uses a hybrid dataflow technology to extract parallelism 
and pipelining for high performance computation in streaming 
data applications. The dataflow logic is configured into the 
application solution graph by using CGRL comprised of 
functional blocks and connectivity elements. The CGRL is 
implemented as PIM on the logic layer within a 3D stacked 
DRAM. Figure 3 shows a high-level architecture of the proposed 
dataflow PIM.  
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Figure 3: DFPIM Architecture 

The left section represents the host computer for the DFPIM 
elements. This is a standard server or workstation computer 
system. The only feature that is not standard on current 
systems is a high-speed serial interface for connecting the 
accelerated memory modules. Processor manufacturers are 
incorporating these links in new products to take advantage 
of the higher bandwidth and lower energy of 3D stacked 
DRAM devices [7, 8]. 

There can be multiple accelerated memory modules (AMM) as 
shown in the figure.  The center section shows an accelerated 
memory module expanded into the logic layer base and a stack 
of DRAMs, including representation of the sixteen independent 
vertical vaults. The logic layer base contains one memory 
controller and one DFPIM instance for each vault. A 
microcontroller is included on the logic layer to assist DFPIM 
configuration and minimize the communication between the host 
and DFPIM for optimum performance. 

The right section shows an expanded view of the logic layer 
for one vault. The memory controller accesses the memory stack 
vault directly above the vault controller [2, 36, 43]. The memory 
controller communicates with the high-speed link for data 
transfers with the host. The DFPIM instance has load and store 
units within the CGRL that access the DRAM stack through 
the memory controller and buffer input data for the dataflow 
graphs. The DFPIM instance consists of the CGRL logic and 
the scratch pad memories that are local to the CGRL functional 
units. for implementing the dataflow graphs of the applications. 
There is also a link to the DFPIM microcontroller that is used 
to configure the CGRL and to initialize and store data from the 
scratch pad memories as needed. 

3.1. DFPIM Operation 

DFPIM operation can be divided into four phases. Initiation 
is performed by the host processor. Configuration is executed 
by the DFPIM micro-controller. Computation is executed by 
the DFPIM logic until the input data is exhausted. An update 
phase is conducted by the micro-controller for storing results. 

The host computer initiates a DFPIM operation when a 
command that uses the DFPIM is executed. As an example, a 
user could enter a command via the keyboard. The operating 
system reads an executable file that contains the machine 
instructions that implement the given command. When the 
DFPIM is to be involved, there is a data segment within the 
file that must be transferred to the DFPIM. This is very similar 
to executing a command implemented in OpenCL or CUDA that 
involves a graphics processor. The code to be executed by the 

graphics processor is copied from a data segment of the host 
executable to the graphics processor to be used as the 
instructions to execute. The data segment directed to the DFPIM 
is copied through the high-speed link to an address dedicated to 
this. 

The DFPIM logic accepts input data and generates results until 
it runs out of input data. If there is no input data ready for a 
particular clock cycle, the entire logic network waits for the 
data to become available. This is needed to ensure data stays 
synchronized through the computational sequence. If an 
exception condition is encountered it can be posted for detection 
after the computation has completed or it can be passed to 
the micro-controller which will terminate processing and notify 
the host processor that the operation has failed. 

The update phase uses the micro-controller to download any 
results that are contained in scratchpad memories. The host 
processor is then notified that the requested operation has 
completed. In some cases, the results might be transferred to 
the host processor, in other cases it might just be an 
acknowledgement that the operation completed and the results 
are available at the requested location. 

All DFPIM operations are based on physical address offsets since 
the DFPIM resides inside a physical memory. Any indirect or 
pointer accesses within the application must either be based on 
physical addresses or the application data must have been 
allocated as a large, continuous segment and all pointers are 
simply offsets within the segment. DFPIM applications are limited 
to the memory within the 3D-stacked component that contains 
the DFPIM logic.  A communication network on the logic layer 
allows DFPIM elements to access data in other vaults, but this is 
likely to introduce delays.  

3.2. DFPIM Layout  

Figure 4 shows a possible floor plan for a DFPIM implementation. 
The DFPIM components use 50% of a 68 mm2 stacked DRAM 
logic layer (the other 50% is set aside for memory controllers and 
TSVs). The illustration is drawn to scale using logic synthesis 
estimates for each block for a 28nm process technology. ARM core 
is used as the microcontroller for DFPIM. 

 

Figure 4: An Example PIM Layout 
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In this layout the memory controllers are located in the lower left 
corner of each memory vault of an HMC like 3D stacked memory. 
The DFPIM logic is above and to the right of each memory controller. 
The logic units include integer units I (2 load, 1 store, 20 ALUs, four 
multiply units, some specialized units, two FIFOs), floating point 
units F (32 single precision adders and multipliers, ten double 
precision adders and multipliers) and a small local memory M. The 
interconnection bus is a 16 x 32 crossbar which can be segmented 
into smaller buses. This layout is only one example configuration. 
 
4. Experimental Setup 
In this paper we compare the execution times and energy consumed 
by DFPIM with a host system with two 14-core Intel Xeon E5-
2683v3 processor running at 2GHz. Intel Performance Counter 
Monitor tools package [39] was used to monitor the power 
consumed by the CPUs during benchmark execution. We carefully 
isolated the execution time and energy consumed only for the 
benchmark kernels for a fair comparison with DFPIM. The 
execution and energy values for our DFPIM components 
(functional units and ARM core) are estimated using very detailed 
logic synthesis value using TSMC libraries for 7nm and 16nm 
FinFET and 28nm planar CMOS technologies and obtained 
through ARM Limited Artisan physical IP [27]. We evaluated 
eleven clock rates in six variants of 7nm libraries, eight clock rates 
in twelve variants of 16nm libraries and seven clock rates in four 
variants of 28nm libraries. From these 190 different synthesis runs 
for each DFPIM component, we selected the best configuration 
(clock rate and library) that results in optimal energy-delay values. 
Table 1 shows the selected libraries and clock frequencies for the 
three criteria of minimum energy, minimum energy-delay product, 
and the average of those two. We use the libraries and clock rates 
from the average column as a balance of energy and performance is 
desired. 

Table 1: Optimal Silicon Libraries and Clock Rates 
  Energy Energy * Delay E, E*D Ave 

07nm 
16nm 
28nm 

svt-c8, 1.0 GHz 
lvt-c16, 0.8 GHz 
svt-c35, 0.6 GHz 

ulvt-c8, 2.0 GHz 
ilvt-c16, 1.5 GHz 
svt-c30, 1.1 GHz 

lvt-c8, 1.8 GHz 
ilvt-c16, 1.0 GHz 
svt-c30, 1.1 GHz 

4.1. Dataflow Graph Generation  

We developed a backend to LLVM compiler [28, 29] to generate 
dataflow graphs. The portion of the C program that is targeted for 
execution on DFPIM is first identified. Using LLVM intermediate 
representation for the identified kernel code, a dataflow graph is 
generated. For our purpose the output is represented in XML 
representing the various functional units used by the graph and the 
connections between these units to form the graph. This XML code 
is used by our DFPIM simulator for producing execution results 
presented in Section 5.  

4.2. DFPIM Simulator  

Our simulator takes the input (in XML) generated by LLVM for 
each benchmark kernel, configures the functional units to represent 
the dataflow graph represented by the LLVM output, and executes 
the graph with inputs transmitted by the host processor. For our 
purpose we assume that both the host and DFPIM use the same 

address space and thus DFPIM will access the data from the shared 
3D DRAM memory. Both host and DFPIM rely on physical 
addresses. The load units contained within DFPIM will buffer 
inputs for use by the computational functional units, and the store 
units copy results back to memory. 

The execution delays and energy consumed by the various DFPIM 
logic components are based on the values obtained by our logic 
synthesis as described above in Section 4.  

5. Results 
In this section we describe the results of our experiments comparing 
the execution times and energy consumed by DFPIM with a host 
system as described in the previous section. 

5.1. Benchmarks 

We selected representative benchmarks from a wide-variety of 
application domains. The map-reduce benchmarks from HiBench 
[18], the map-reduce benchmarks from PUMA [1], the Rodinia 
benchmarks [6], SPEC benchmarks [38], and MiBench 
benchmarks [16] were reviewed. We selected benchmarks that 
had significant differences in their suitability for dataflow 
implementation. The seven benchmarks used in this paper are 
histogram, word occurrence count, fast Fourier transform, 
breadth first search, string match, linear regression, and SHA256. 
The SHA256 benchmark had three versions implemented in 
DFPIM for a total of nine analyses. We now describe these 
benchmarks. 

Histogram. The histogram benchmark inputs an RGB image 
and generates a histogram of values for the red (R), green (G), 
and blue (B) components of the pixels. The benchmark code 
isolates the 8-bit color values from a 24-bit input with shift and 
mask operations. The pixel component values are used as 
addresses to three arrays (scratch pad memory in DFPIM) that 
returns the current count, increments it, and stores the new 
count. The input file contained 468,750,000  RGB pixels. 

Word Count. The word occurrence count benchmark is based on 
tasks used in web indexing and searches. The first part of the 
benchmark inputs a character stream and isolates it into words. 
The second part of the benchmark creates a hash for the word 
and looks for the word in a hash table. If the word is found in 
the table its occurrence count is incremented, otherwise it is 
added to the table with a count of 1. The server implementation 
of the benchmark serially finds a word then processes the word, 
then looks for the next word. The DFPIM implementation has 
two sections. The first section processes the input looking for 
words. When a word is found it is put into a FIFO. The second 
section pulls a word from the FIFO, processes the word and 
then pulls the next word. The DFPIM uses word-wide 
comparison for word matching. The two sections work 
independently and are synchronized through the FIFO. The 
benchmark input was 94,858,002 bytes in length. 

Fast Fourier Transform. The FFT benchmark processes a frame 
of time sampled data into a frame of frequency bins. The number 
of samples in the input frame is a power of 2, designated as N. 
The butterfly implementation of the algorithm is a triple nested 
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loop where the outer loop is repeated log2 (N) times. The middle 
loop iterates based on powers of 2 from log2(N)-1 to 1 while 
the inner loop iterates based on powers of 2 from 1 to log2(N)-
1. The code within the inner loop is executed log2(N) * N/2. 
The FFT algorithm does benefit from caching as each data 
sample is accessed log2(N) times during a frame processing. 
However, a program using an FFT is likely to process many 
frames in sequentially ordered streaming. The outer loop 
includes two sine and two cosine operations. As the DFPIM does 
not have sine and cosine blocks defined, the micro-controller 
must intervene and perform these operations. Alternately, they 
could be precomputed and stored in a scratch pad, eliminating the 
micro-controller involvement. This analysis was based on a 
frame size of 4096 samples and processing 500 frames of data. 
FFT is an example of a benchmark that is not very well suited for 
pure dataflow implementation.  

Breadth First Search. The breadth first search benchmark is 
neither streaming nor cache friendly. It searches through a tree 
resulting in a random memory access pattern. The only 
advantage of the DFPIM is its faster access time to memory. The 
input file contains a tree with one million nodes. 

String Match. The string match benchmark searches a text file 
for a list of keys. Whenever a match is found, it’s location in 
the text file is saved. The algorithm first locates the end of the 
current word and then compares the word to each of the keys. 
The pointer to the word is stored in the results block when a 
match occurs. This analysis searched a 502 MiB file while 
searching for four keys. 

Linear Regression. The linear regression benchmark takes a 
file of points and accumulates 5 information components: x-
coordinate value, x-coordinate squared, y-coordinate value, y-
coordinate squared, and x-coordinate times y-coordinate. The 
five accumulated values are returned when the end of the input 
data is reached. This benchmark was evaluated with a 670 
MiB file. 

SHA256. The SHA256 benchmark is a cryptographic 
application that creates a digest of a message that can later be 
used to guarantee the message has not been modified. A large 
sequence of rotation, logical and arithmetic operations are 
performed on the input data to generate the 32-byte message 
digest. Each round of the algorithm requires 6 rotate, 3 logical 
AND, 6 logical XOR, 2 logical OR, and 7 addition operations 
for a total of 24 operations per round. Sixty-four rounds are 
performed on each 64-byte input block for a total of 1536 
operations per block Three DFPIM implementations of the 
SHA256 benchmark are used in this evaluation. The first is a 
straightforward implementation where an integer ALU is used 
for each of the operations. One input stream is processed at a 
time. The second implementation creates three new DFPIM 
components implementing macros of the processing round. This 
implementation is designated as SHAmac. The 24 integer ALUs 
per round are reduced to three special components and two 
integer ALUs. The reduced component count decreases power 
and energy while maintaining the same performance. The 
algorithm loops the result of each round to the start of the next 

round. Since the round takes three clocks to pass through the 
pipeline, each component is idle two-thirds of the time. The third 
implementation interleaves three different input streams to 
achieve three times the throughput of the first two 
implementations. This version is designated SHAmac3. The 
pipeline is fully utilized resulting in higher energy to obtain the 
better performance. A 50 MiB file is processed by the SHA256 
benchmark in this evaluation. It should be noted that the two 
alternatives described here are not available with server 
implementation of SHA (since we cannot modify the functional 
units of the server). 

5.2. Server Benchmark Results 

The results of running the benchmarks on the server processor 
are shown in Table 2. The first eight rows of the table provide 
the measured data from the benchmark execution. The last five 
rows of the table are calculated values derived from the measured 
data. All three variants of the SHA256 benchmark are shown in 
this table even though the server data is the same for the three 
variants since there is only one implementation of SHA on the 
server. This keeps the four result tables consistent. 

The Base Clocks / Item is the number of processor clocks 
needed to complete the benchmark while running on a single 
processor divided by the number of benchmark items processed. 
This baseline is compared to the clocks per item measured when 
the server is running 32 instances of the benchmark 
simultaneously to show how well the benchmark scales. The 
Clocks (M) row is the total number of processor clocks to 
complete the benchmark. The number is in millions of clock 
ticks. The Freq (clk / usec) entry is the actual operating frequency 
of the processor as reported by the hardware during the 
benchmark. This is measured to ensure the operating system 
did not change the frequency of the processors during operation. 

 

The Items / Proc (K) measurement is the number of 
thousands of benchmark items processed on each of the 32 
instances of the benchmark executed on the server. The Item Size 
(bytes) is the size of the benchmark item. The histogram 
benchmark processes pixels that are composed of a red, a green, 
and a blue component for a total of three bytes per pixel. The word 
count benchmark processes characters as input for a 1 byte size. 
The FFT benchmark operates on complex numbers with a 
floating-point real and imaginary values for a total of 8 bytes. 
Breadth first search operates on pointers with a size of 8 bytes. 
String match processes characters as input for an item size of 
1 byte. The linear regression processes data points with an x 
component and y component that are both bytes. The SHA256 
algorithm processes a 64-byte block of data as an item.  

The CPU Power (W) row contains the measured CPU power 
in Watts for the benchmark. The Mem Power (W) row provides 
the measured memory power in Watts. There is very little 
variation in power for the different benchmarks. The power 
measurements showed more correlation to the number of cores 
that were active than the type of activity being performed. 
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Table 2: Server Benchmark Results 

  Hist Word FFT BFS Str M Lin R SHA256 SHAmac SHAmac3 

Base Clocks / Item 45.08 18.57 348.85 82.08 12.28 25.08 2160.19 2160.19 2160.19 

Clocks (M) 299.30 76.70 776.64 164.64 262.74 372.49 131.07 131.07 131.07 
Freq (clk/usec) 1997 1997 1997 1997 1997 1997 1997 1997 1997 
Items / Proc (K) 4882 2964 2048 1000 16454 10986 51 51 51 
Item Size (bytes) 3 1 8 8 1 2 64 64 64 
CPU Power (W) 126.17 125.86 125.62 125.35 125.73 124.81 126.34 126.34 126.34 
Mem Power (W) 2.27 2.07 1.96 2.09 2.02 2.02 2.02 2.02 2.02 
Kernel percent 99.99 99.99 98.88 99.25 99.99 99.99 95.81 95.81 95.81 
Execution Time (S) 0.1499 0.0384 0.3889 0.0824 0.1316 0.1865 0.0656 0.0656 0.0656 

Server Energy (J) 19.250 4.913 49.617 10.507 16.808 23.657 8.425 8.425 8.425 
Bandwidth (MB/S) 3127.6 2469.8 1348.1 3105.1 4002.1 3769.6 1604.5 1604.5 1604.5 
Clocks per item 61.30 25.87 379.22 164.64 15.97 33.91 2549.05 2549.05 2549.05 

Congestion Factor 0.36 0.39 0.09 1.01 0.30 0.35 0.18 0.18 0.18 

______________________________________________________________________________________________________ 
 

The Kernel percent measurement indicates the percentage of 
benchmark clocks that were used for execution of the 
benchmark kernel section. 

The Execution Time (S) is derived from the total clocks 
executed divided by the clock frequency and expressed in 
seconds. 

The Server Energy (J) is computed by adding the CPU power 
and memory power and multiplying the sum by the execution 
time. This expresses the energy in Joules. 

The Bandwidth (MB/S) is the number of benchmark items 
times the size of each item divided by the execution time. It 
does not include any instruction accesses, incidental cache hits, 
or memory accesses from algorithmic overhead such as loop 
indexing or address calculations. 

The Clocks per item metric is the number of processor clock cycles 
divided by the number of benchmark items of a benchmark 
instance running on each of 32 processors. As the actual 
number of clock cycles required per item is given in the base 
clocks per item, any additional cycles must be attributed to 
congestion in accessing memory or other resources. The 
Congestion Factor row expresses this congestion as a 
percentage of the base clocks per item. There is a noticeable 
trend for higher memory bandwidths to have higher congestion 
factors. 

5.3. DFPIM Benchmark Results 

Table 3 displays the measurements for the DFPIM benchmarks. We 
analyzed three different silicon technologies as described in 
Section 4. This resulted in a separate measurement for each 
technology. The units used in this table are consistent with 
the units in Table 2 allowing the numbers to be directly 

compared. The data for the server processor was collected with 
32 active cores. The DFPIM has 16 vaults and each DFPIM 
executes an instance of the benchmark (server system represents 
twice as many “cores” that are executing twice as many copies of 
the benchmark kernel when compared DFPIM implementation). 
Therefore, the Items / Vault (K) will be double the number of 
items per process used for the server processor data. 

The DF Power.. (W) is the power of the DFPIM components 
which is equivalent to the CPU power of the server data (and 
we show the values for 28, 16 and 7nm versions. The Mem 
Power.. (W) is the power of the memory accesses within the 
stacked DRAM. The Clocks per item measurement does not 
have three components as the underlying silicon technology does 
not impact the dataflow pipeline organization resulting in the 
same number of clocks for each technology. The lower clocks per 
item in the DFPIM results compared to the server processor 
results show the benefits of the dataflow parallelism and 
pipelining. The power values show the benefits of low power 
silicon libraries and not pushing the technology to its performance 
limits (running at lower frequency than maximum possible). 

The advantages of using specialized functional units for the 
SHAmac version of the SHA256 benchmark can be seen in 
the DF Power values. There is no difference in timing as the 
benchmark round still requires three clocks. Interleaving three 
benchmark instances in the SHAmac3 version does show a 
factor of three timing improvement.  This version shows an 
increase in power as each component is active every cycle while 
components are only active for 1 in 3 clocks in the other two 
SHA256 versions.  
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Table 3: DFPIM Benchmark Results 

  Hist Word FFT BFS Str M Lin R SHA256 SHAmac SHAmac3 

Clocks (M) 9.77 6.02 49.27 57.56 33.57 21.97 19.75 19.75 6.58 
Freq28 (clk/usec) 1100 1100 1100 1100 1100 1100 1100 1100 1100 
Freq16 (clk/usec) 1300 1300 1300 1300 1300 1300 1300 1300 1300 
Freq07 (clk/usec) 1800 1800 1800 1800 1800 1800 1800 1800 1800 
Items / Vault (K) 9765 5928 4096 2000 32909 21972 102 102 102 
Item Size (bytes) 3 1 8 8 1 2 64 64 64 
DF Power28 (W) 0.2000 4.6165 1.7990 0.2885 0.5598 0.6358 0.2899 0.0972 0.3803 
DF Power16 (W) 0.1313 2.8157 1.1809 0.1845 0.3587 0.4120 0.1840 0.0634 0.2442 
DF Power07 (W) 0.0779 1.8954 0.7514 0.1132 0.2198 0.2690 0.1063 0.0376 0.1556 
Mem Power28 (W) 2.0329 0.9828 0.8165 0.6148 0.9807 1.5119 0.6437 0.6437 0.9909 
Mem Power16 (W) 2.3170 1.0760 0.8795 0.6411 1.0736 1.7014 0.6752 0.6752 1.0857 
Mem Power07 (W) 3.0274 1.3091 1.0369 0.7070 1.3058 2.1750 0.7542 0.7542 1.3224 
Exec Time28 (S) 0.0089 0.0055 0.0448 0.0523 0.0305 0.0200 0.0180 0.0180 0.0060 
Exec Time16 (S) 0.0075 0.0046 0.0379 0.0443 0.0258 0.0169 0.0152 0.0152 0.0051 
Exec Time07 (S) 0.0054 0.0033 0.0274 0.0320 0.0186 0.0122 0.0110 0.0110 0.0037 
DF Energy28 (J) 0.0261 0.0336 0.1484 0.0815 0.0631 0.0537 0.0160 0.0142 0.0123 
DF Energy16 (J) 0.0221 0.0198 0.0960 0.0569 0.0466 0.0423 0.0109 0.0101 0.0091 
DF Energy07 (J) 0.0185 0.0115 0.0571 0.0352 0.0327 0.0327 0.0067 0.0063 0.0065 
BW28 (MB/S) 52800.0 17322.8 11704.8 4892.5 17254.9 35200.0 5866.6 5866.6 17599.4 
BW17 (MB/S) 62400.0 20472.4 13832.9 5782.0 20392.2 41600.0 6933.2 6933.2 20799.2 
BW07 (MB/S) 86400.0 28346.4 19153.2 8005.8 28235.3 57600.0 9599.9 9599.9 28798.9 

Clocks per item 1.00 1.02 12.03 28.78 1.02 1.00 192.00 192.00 64.00 

______________________________________________________________________________________________________
 

5.4. Server to DFPIM 28 nm Comparison 

The Intel Xeon E5-2683v3 processor used in this evaluation is 
implemented in a 22 nm FinFET silicon process. It is being 
compared to the DFPIM in a 28 nm planar process. This gives the 
server processor a moderate technology advantage. The lower 
production volume of a PIM logic layer compared to a server 
processor would favor the lower development and production 
cost of the 28 nm planar technology making this a reasonable 
comparison. The benefits of the two smaller FinFET 
technologies are shown in Table 4 for applications needing the 
additional performance while maintaining low energy.  

The speedup 28 shows the execution time on server compared to 
that on DFPIM using 28nm technology.  

 

The large histogram speedup is a result of computing the red, 
green, and blue pixel components in parallel. The DFPIM ability 
for single clock-cycle read-modify-write of the scratch pad 
memories is another factor contributing to the large histogram 
speedup. The word occurrence count benchmark speedup results 
from separate, independent character and word processing sections 
and the DFPIM capability to perform a full word comparison in a 

single clock. The FFT speedup is achieved by parallelism and 
pipelining to achieve 14 algorithm operations per clock cycle.  
The breadth first search benchmark has only a marginal speedup 
due to its unstructured and limited parallelism. The string match 
benchmark speedup results primarily from processing the four keys 
in parallel and independent character and word processing sections.  
The linear regression benchmark performs all five updates in 
parallel with the three multiplications pipelined for eight 
operations per clock. The standard SHA256 algorithm provides an 
average of eight operations per clock, but is limited to a 
threeclock pipeline latency due to data dependencies. Interleaving 
three benchmark instances increases the speedup for SHAmac3. 

Likewise, E-ratio 28 shows the energy consumed on server 
compared to the energy consumed on DFPIM using 28nm 
technology. \ The energy ratio of 334.4 for the FFT indicates 
performing an FFT on a server processor requires 334 times that 
of DFPIM implementation.   The speedup is then multiplied 
with the energy ratio to get a ratio of the energy-delay products 
of the benchmark implementations. The Table also includes the 
memory bandwidths taken directly from Table 3. 
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Table 4: Server vs 28nm DFPIM comparisons 

 
  Hist Word FFT BFS Str M Lin R SHA256 SHAmac SHAmac3 

 

Speedup 28 16.9 7.0 7.9 1.6 4.3 9.3 3.2 3.2 7.5 
 

Server energy (J) 19.250 4.913 49.617 10.507 16.808 23.657 8.425 8.425 8.425   
E-ratio 28 737.3 146.3 334.4 128.9 266.5 440.5 525.6 592.3 686.3 

 

S * E-ratio 28 12425 1025 2646 201 1149 4109 1667 1878 5158 
 

Server BW 3127.6 2469.8 1348.1 3105.1 4002.1 3769.6 1604.5 1604.5 1604.5 

DFPIM 28 BW 52800.0 17322.8 11704.8 4892.5 17254.9 35200.0 5866.6 5866.6 17599.4 

_____________________________________________________________________________________________________ 
 

5.5. DFPIM 28 to DFPIM 16 nm and 7 nm Comparison 

The 28 nm planar technology has been in production since 2009. 
The 16 nm technology began production in 2013 and the 7 nm 
technology began production in 2017. The newer technologies 
offer both performance and energy efficiency benefits. These 

benefits are quantified in Table 5. The first section of the table 
uses all three DFPIM time values from Table 3. The speedup 16 
(speedup 7) row is the DFPIM 28 execution time divided by the 
DFPIM 16 (DFPIM 7)execution time. Likewise, E-ratio 16 and 
E-ratio 7 show the energy comparisons of 28, 16 and 7nm 
technologies

_____________________________________________________________________________________________________ 
Table 5. Comparing 28nm, 16nm and 7nm DFPIM results

 
Hist Word FFT BFS Str M Lin R SHA256 SHAmac SHAmac3 

 

Speedup 16 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2 
 

Speedup 7 1.6 1.6 1.6 1.6 1.6 1.6 1.6 1.6 1.6 
 

E-ratio 16 1.18 1.69 1.55 1.43 1.35 1.27 1.46 1.41 1.34 
 

E-ratio 7 1.41 2.92 2.60 2.31 1.93 1.64 2.39 2.25 1.90 
 

S * E-ratio 16 1.40 2.00 1.83 1.69 1.60 1.50 1.73 1.67 1.59 
 

S * E-ratio 7 2.31 4.78 4.25 3.79 3.15 2.69 3.91 3.68 3.10 
 

______________________________________________________________________________________________________ 
 

The speedup, energy ratio, and speedup * energy product ratio 
factors are multiplicative with the values for the server to DFPIM 
28 nm comparison shown in Table 4. Thus, the average speedup 
of 7.2 for server to DFPIM 28 nm becomes 11.5 (7.2 * 1.6) for the 
server to the DFPIM 7 nm speedup. The energy efficiency of 368 
for server to DFPIM 28 nm becomes 810 for server to DFPIM 7nm. 

6. Related Works  
We only include works that rely on dataflow like processing. There 
are too many proposals for PIM or Near Data Processing that use 
conventional processing architectures or GPUs. 

The Near DRAM Accelerator (NDA) [10] utilizes a dataflow 
network of functional devices to reduce energy by 46% and 
increase performance by an average 1.67 times. The NDA does 
not include sequencing functional units or scratch pad memories 
which DFPIM has shown to be necessary for improved 
performance in some benchmarks. The NDA connects each 
accelerator to a single DRAM die rather than a 3D-DRAM stack 
used by DFPIM. This results in a higher accelerator-to-memory 
cost ratio as a single DFPIM can support 4 or 8 DRAM dies. 

Gan uses a reconfigurable dataflow architecture [11] to 
implement stencil operations for atmospheric modeling. The 
FPGA implemented system achieved a speedup of 18 compared 
to a server processor. The server processor used 427 Watts, 
while the FPGA hardware added 523 Watts to achieve the 
speedup. The overall power efficiency was 8.3. The power 
required is not suitable for a PIM application, but the 
performance gain showed the effectiveness of a dataflow 
implementation. 

The Heterogenous Reconfigurable Logic (HRL) near data processing 
[12] uses CGRL functional units and bus-based routing as well as 
dedicated memory load and store units. This paper illustrates the 
area, performance, and energy advantages of mixed granularity 
systems such as HRL and DFPIM. The HRL system requires 8 
memory stacks to achieve an average 2.5 speedup, while DFPIM 
gets a 7.2 speedup with a single memory stack. Part of this is 
attributable to the difference between the 45 nm process of HRL 
and the 28 nm process of DFPIM. DFPIM uses a flexible, 
partitioned bus rather than the mesh network of the HRL which may 
allow more efficient implementation of some dataflow graphs. 
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HRL does not have the programmable state machine for 
sequencing and depends on the host for looping. 

The DySER system integrates dataflow graph processing into the 
pipeline of a processor essentially transforming the dataflow 
graph into a processor instruction [13, 14].  The CPU instruction 
fetch and single memory access per instruction greatly limits the 
performance of DySER. Harmonic mean speedup ranged from 
1.3 on SPECint benchmarks to 3.8 on GPU benchmarks. Being 
integrated into the processor pipeline restricts the parallelism 
and pipelining that a full dataflow construct can provide.  

The bundled execution of recurring traces (BERET) research 
implements basic blocks as a dataflow subgraph in a coprocessor 
[15]. Each subgraph is executed through the CPU coprocessor 
interface. A set of eight subgraphs were selected through trace 
analysis to be implemented. The system resulted in a 19% 
performance improvement and a 35% energy savings. A 
coprocessor implementation of a standard eight subgraphs limits 
the capability of a full dataflow approach. 

Single Graph Multiple Flows (SGMF) [40] uses a dynamic 
dataflow paradigm and CGRL to compare with an Nvidia Fermi 
streaming multiprocessor. The applications  for SGMF are 
compute intensive applications so it is not suitable as a PIM. 
However, the advantages of using dataflow with CGRL is shown 
in this paper with an average speedup of 2.2 and energy efficiency 
of 2.6. 

The Wave Computing dataflow based neural net accelerator [33] 
uses an array of small processors to execute basic block 
instructions. Each processor is assigned a basic block and 
accepts data from its predecessors and provides data to its 
successors.  The processor contains a 256-entry instruction RAM 
and a 1KB data RAM. The network routing forms the dataflow 
graph. Current implementation of a Wave compute appliance 
consists of four data processing units per board, multiple boards 
per chassis and multiple chassis. This is not suitable for a low 
power PIM implementation 

7. Conclusions  
In this paper we described a processing-in-memory accelerator 
based on dataflow computing model and we show that our system 
can be used for distributed applications such as Big Data analytics. 

We used careful and extensive logic syntheses to obtain execution 
and energy values for our DFPIMs components using 28nm, 16nm 
and 7nm technologies. We developed a backend to LLVM to 
generate dataflow graphs from C code kernels identified for PIM 
processing. These graphs are then used by our simulator, which 
executes the graph with inputs and generates results. We have 
verified the correctness of execution by our simulator by comparing 
the results generated from an execution on a host processor that uses 
Intel Xeon cores.  

We compared the performance and energy values of DFPIM 
implementations with those obtained from our baseline host 
consisting of 2 14-core Intel Xeon processors for a variety of 
benchmarks. We evaluated three different versions of DFPIM using 
28nm, 16nm and 7nm technologies. We compared 28nm planar 

version of DFPIM with the host (which uses 22 nm FinFET 
technology). 

The DFPIM concept showed good performance improvement 
and excellent energy efficiency for the streaming benchmarks 
that were analyzed. The DFPIM in a 28 nm process with an a 
DFPIM core in each of 16 vaults showed an average speedup of 
7.2 over 32 cores in the server system. The server processor 
required 368 times more energy to execute the benchmarks than 
the DFPIM implementation. These values result from the 
parallelism and pipelining available in the DFPIM architecture 
and the use of low power libraries in the silicon process.  

Better performance and higher energy efficiency are possible by 
using the more recently available 16 nm and 7 nm silicon 
technologies. The 16 nm technology provides a modest speedup 
of 1.2 with an energy efficiency improvement of 1.4 compared to 
the 28 nm. The 7 nm technology provides a speedup of 1.6 with 
an energy efficiency of 2.2 compared to the 28 nm. 

The 7 nm DFPIM implementation has an average speed-up of 11.5 
with an energy efficiency ratio of 810 when compared to the 
server processor system. 
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