® [n today's climate

of tight budgets and
schedules, reliability
measuyement can
belp you deliver the
level of reliability

your customers need.

IEEE SOFTWARE

Reliability
Measurement:
From Theory
to Practice

FREDERICK T. SHELDON,

General Dynamics, Fort Worth Division
KRISHNA M. KAV, University of Texas at Arlington

ROBERT C. TAUSWORTHE,

Jet Propulsion Laboratory, Caltech

JAMES T. YU, AT&T Bell Laboratories

RALPH BRETTSCHNEIDER, Motorola

WiLLIAM W. EVERETT, AT&T Bell Laboratories

ressure on software en-

gineers to produce high-quality software
and meet increasingly stringent schedules
and budgets is growing. In response, reli-
ability measurement has become a signif-
icant factor in quanttatively characteriz-
ing quality and determining when to
release software on the basis of predeter-
mined reliability objectives. In fact, some
US Dept. of Defense organizations now
require software reliability measure-
ments.

Motorola’s World Wide Systems
Group has used reliability methods to
help gauge the level of latent defects in
hundreds of releases and millions of lines
of code.! According to Ralph Brettschnei-

0740-7458/82/0700,/0013/$03.00 © [EEE

der, Motorola has found reliability mea-
surement to be exceedingly useful in help-
ing decide if a release’ quality is accept-
able as measured against an ever
improving quality goal: customer expec-
tations. Brettschneider claims that relia-
bility measurement for release control,
plus other initiatives, has in the last four
years produced a hundredfold improve-
ment in the number of defects per thou-
sand lines of source code reported on re-
leased software.

Despite similar testimonials, there
is still a large gap between reliability
measurement theory and practice. We
seek to bridge this gap by presenting
a few key issues that underlie reliability

Authorized licensed use limited to: University of North Texas. Downloaded on July 27, 2009 at 14:38 from IEEE Xplore. Restrictions apply.

e Concept Reliability-
_ exploralion knowledge
~.

development

Analysis -

Reliability
. loo Iw_ .

Confirm accuracy
of predictions

Date .~

collection Retirement

Figure 1. Reliability measurement bappens in conjunction with testing and integration, before the software is released into operations and maintenance. Reliability-
model development is fed by activities in the requirements, design, repair, and operations and maintenance phases. During reliabili del develop you plan how
to use the selected model, set a reliability objective, and initiate activities to support the level of sensitivity you need for data collection (calendar time, wall-clock time, or
CPU execution time, for example). Reliability data collected from fielded software can be useful for evaluating the accuracy of predictions and recalibrating the veliability
model. The veliability model, which incorporates project-specific constraints, tolerances, and sensitivities, should retain this information so that it yields more accurate

measures when it is reused on future projects.

measurement’s evoludon from theory to
practice. We served on a panel at the Sym-
posium on Applied Computing” in Fay-
etteville, Arkansas, where we outlined re-
liability measurement’s salientissues, basic
concepts, and underlying theory, which
we present in this article. We also an-
swered three basic ques-

dons about the technol-

a specific method and
make no conclusions.
However, we do consider
reliability measurement
to be an important ezerg-
ing technology. As our
comments indicate, we have an earnest
concern thatsoftware is frequently unre-
liable,and we believe thatreliabilitymea-

reliability metrics as
well as the program’s
operational profile.

surement can be a very effective,
customer-oriented way to determine and
deliver the appropriate level of quality.

RELIABILITY IN THE LIFE CYCLE

Reliability is one important measure
that can help developers
understand, manage, and

ogy; our responses are I control a development
summarized in the box on Devel()pefs must process constrained by
p- 16-17. . . time and cost.

We do not recommend |de""fy UserI The need for a quan-

titative understanding of
software quality — and
hence reliability — and
the factors that affect it
(like operational envi-
ronment, testing meth-
ods, tools, schedules, and cost) has spurred
much research on improving our insight
into the development life cycle. Figure 1

shows where reliability measurement fits
in. The effort to improve reliability mea-
surement is fed by efforts in the require-
ments, design, testing and integration, and
operations and maintenance phases.

Influendng fadors. Many factors influ-
ence the target system’s reliability: What
are its hardware/software elements? Will
it evolve in function and/or desired reli-
ability? Do its parts run at different
speeds? What are the customer’s expecta-
tions?

Developers must determine what reli-
ability metrics are useful and what the
customer considers a failure (including
even minor deficiencies and anomalies).
Fault-tolerant systems require that the de-
veloper carefully distinguish anomalous
internal states that can be tolerated from
the failures that affect a customer’s opera-
tions. Customers, too, may want to classify

14

JuLy 1992

Authorized licensed use limited to: University of North Texas. Downloaded on July 27, 2009 at 14:38 from IEEE Xplore. Restrictions apply.

failures by their severity (if they would af-
fect safety, threaten life, cause a loss of in-
come, or be expensive to repair, for exam-
ple).

The developer must also identfy an
operational profile by gathering informa-
ton on how previous versions were used,
estimating the use of new features, and
verifying the resulting estimated profile
with the customer.’ The operational pro-
file can help plan test cases and data collec-
don (possibly classified in terms of both
developer-oriented and user-oriented
characteristics) and methods to compen-
sate for special conditions. Special condi-
tons may include the effect of instrumen-
tation on hard real-time scenarios or
accounting for the fundamental differ-
ences among unit test, integration test,
systems integration, and acceptance test.

Measurement process. Reliability model-
ing, then, has three broad stages.”

¢ Assessment. The developer makes
some assumptions about the environmen-
tal conditions under which the software
will run. This is an important step because
itis often infeasible to re-create the opera-
tonal environment exactly.

& Model development. The developer
derives mathematical formulas to esdmate
(or predict) useful system parameters like
failure intensity, number of failures in an
interval, and the probability distribution
of failure intervals. The developer esti-
mates these parameters from real data
using stadstical techniques like maximum
likelihood estimation, least squares esti-
mation, and Bayesian methods.

& Measurement and estimation. The de-
veloper uses these parameters to predict
behavior and help plan, maintain, and up-
grade software. However, reliability mea-
surement is typically distinguished from
reliability prediction in that prediction is
based on static metrics, such as size and
complexity, and measurement (or estima-
don) is based on the dynamic execution
behavior — the failure data collected dur-
ing system test.

Recent work by Yashwant Malaiya,
Nachimuthu Karunanithi, and Pardeep
Verma shows thatsome models work bet-
ter in some cases. They have presented

empirical results from five fault-count
models to compare the predictive validity
of each model according to three types of
predictability measures (goodness-of-fit,
next-step predictability, and variable-term
predictability).

DEFECTS AND RELIABILITY

Reliability is the probability of failure-
free operaton for a specified dme in a
specified environment for an intended
purpose. A “failure”
happens when a defect
causes the software to
operate inappropriately
— when operation devi-
ates from system re-
quirements.

Reliability is the
probability of
foilure-free operation for

ric uses me-independent measures.>”
"This test-case-intensity metric counts the
number of test cases applied per thousand
lines of code to measure the amount of
stress applied to the software during test.
When combined with an estimate of com-
plexity, this metric may be a powerful in-
dicator of reliability prediction and valida-
ton.

Defedt removal. Figure 2 illustrates the
defect-removal process as a state-transi-
tion diagram. Although
failure occurrence is ran-
dom and the probability
distribution varies with
time, failure behavior is af-
fected by three principal
factors:

The four traditional L L ¢ the number of defects
ways to report failures a Specrﬁed “me na (h-defects),
are based on time: time Spe(]‘hed environment o the test strategy and
of failure, time interval o operational profile, and
between failures, cumu- fOf a SpeCfﬁed pU(pOSG ¢ defect detection, re-

lative failures experi-
enced up to a time, and failures experi-
enced within a time interval.} A new met-

moval, and possible rein-
troducton (p-defects). Many reliability
models allow for imperfect debugging,

Release
Tolerable number of defects with
an acceptable failure occurence.

Testing state
N undetected defects
-defects and possibly
p-defects exist.

Deferred state
Cost outweighs benefits
of repair.

Defect detected
Determine the cost-benefit and
requirements for fixing the defect.

Figure 2. The defect-vemoval process illustvated as a state-transition diagram. Beginning with the testing
phase, a system with N unknown defects is executed until (A) a defect is detected. In the defect-detection phase,
the developer can either (B) fix the defect and return the system to testing or (C) decide to defer vepair for
cost-benefit reasons. This process continues until (D) a sufficient amount of failure-free opevation bas occurred
and the last intolerable defect bas been repaired. Defects uncovered in the release state are considered either (E)
tolerable or (F) intolerable, in which case the system is returned 1o the defect-detected state.

IEEE SOFTWARE

15

Authorized licensed use limited to: University of North Texas. Downloaded on July 27, 2009 at 14:38 from IEEE Xplore. Restrictions apply.

At the Symposium on Ap-
plied Computing, Frederick T.

Sheldon and Krishna M. Kavi
moderated a panel whose mem-
bers have more than 35 years of
experience in reliability mea-
surement. Sheldon and Kavi
asked each panelist to answer
three basic questions about reli-
ability-measurement technol-
ogy. To conserve space, their
responses are limited to differ-
entand unique comments.

Why do we need reliability technol-
ogy?

Everett: There is a swong
need for more customer-ori-
ented measures of software
quality. When I say thisIam
often asked, why do we need
customer-oriented measures?
‘Why not just build the best
product we can? My answer is
that without customer-oriented
quality measures, we cannot
consciously make effective
trade-offs between cost and the
delivery time frame. Unfortu-
nately, trade-offs generally
wind up being made uncon-
sciously, with the level of qual-
ity being whatever fits into the
cost and schedule constraints al-
ready established.

To the customer, one of the
most important quality attri-
butes is reliability. Current
heavily used measures in soft-
ware development, such as
number of faults or faults per
thousand lines of code, are
closely tied to the development
process but are not necessarily
good measures of quality from
the customer’s perspective.
The customer does not neces-
sarily relate to faults per se, but
rather to the failures they will
cause. Failures, the frequency
at which they occur, and their
* impact on business are mea-
| sures more closely coupled to
* the customer’s perception of

MOVING FROM THEORY TOWARD PRACTICE: RELIABILITY PANEL COMMENTS

quality.

Reliability tends to be used
synonymously with hardware
reliability. However, over the
years the amount of software
embedded in our products has
increased to the point that, for
many products, the reliability
of the software dominates that
of the hardware. The discipline
of software-reliability engineer-
ing is emerging, and it will do
for software what hardware-re-
liability engineering has done
for hardware.

Tousworthe: There is a need
for this technology. One main
question concerns what the cri-
teria are for a suitable model. It
is necessary to distinguish be-
tween failure models and pre-
diction models of the same phe-
nomena. These need not be the
same in all respects, but must
be compatible in their assump-
tions about the underlying pro-
cess. Outputs of prediction
models should be related to
risks, while outputs of failure
models should be related to
product and process data typi-
cal of that which can be mea-
sured.

There should be sound, in-
tuitive, plausible, and verifiable
assumptions basing the models.
Formalism is necessary because
empiricism is not enough. We
have to understand the underly-
ing physical process and then
conform that process to empiri-
cism. In this way, we may use
empiricism to calibrate the
models.

Yu: I would like to extend
the scope of software reliability
to cover the following two
areas: Estimation of failure in-
tensity — the number of soft-
ware failures per unit of time —
and prediction of remaining
software faults.

Serious failures, such as out-

ages, seldom occur in the test-
ing environment, and software-
reliability models have little use
in such an environment. To
apply software reliability, there
must be enough software fail-
ures identified during the sys-
tem testing interval. The opera-
tional profile constitutes the
input data to test the software
product. To simulate the
customer environment, the fre-
quency of each type of input
data should also be collected
from customers or similar prod-
ucts.

Brettschneider: Beyond the
prime customer issue that soft-
ware is too expensive lies a sec-
ond major concern: Software is
frequently unreliable. Though
different, these two issues are
related.

Failure to initially achieve
reliable software will resultin a
need for additional testing and
field support, the cost of which
must be passed on to the
customer. Unfortunately the re-
lease decision is usually based
on an evaluation of the
software’s expected quality bal-
anced against its release-date
commitment. The cost of poor
quality is then shifted from the
producer to the consumer.

My experience in using a
simplified decision-making ap-
proach, based on modeling the-
ory, has been quite successful in
helping me decide if acceptable
software quality has been
achieved and if the software is

ready for release.

s the technology ready for applica-
tion?

Everett: We have seen tre-
mendous growth in the science
of software reliability in the last
15 to 20 years, in particular in
the development of reliability
models and numerical algo-

]

rithms for evaluating such mod-
els. However, I feel the develop-
ment of software reliability as
an engineering discipline has
lagged behind its development
as a science.

More and more of the engi-
neering discipline will evolve as
we apply the science to our soft- |
ware.

My experience is that the
basic theory is ready to apply
now. As part of our education
and training department at
AT&T Bell Labs, I have been
working with 2 number of pro-
jects to move software reliabil-
ity from theory to practice.
Some of the areas and ways in
which software reliability has
been and is being applied in-
clude

¢ monitoring the progress
of systemn test,

¢ predicting elapsed system
test time to achieve a specified
reliability objective,

¢ defining operational pro-
files,

setting reliability objec-
tives,

¢ evaluating designs with
respect to reliability,

+ using reliability measures
to change testing environ-
ments, and

¢ exploring how reliability
measures can be used during
development testing.

There tend to be enough
initial benefits to justify the in-
troduction of the technology,
but we should keep its initial
use simple. I have seen a mum-
ber of successes in its applica-
tion, in particular during sys-
tem test, to monitor test
progress and estimate test com-
pletion.

I'would be remiss if I did
not say we have also seen some
setbacks. However, | have not
seen any setbacks thatI can re-
late to major deficiencies in the
theory of software reliability.

16

JuLy 1992

Authorized licensed use limited to: University of North Texas. Downloaded on July 27, 2009 at 14:38 from IEEE Xplore. Restrictions apply.

"There has been a lot of dis-
cussion over the controversy
surrounding software reliabil-
ity. Much of the controversy
. seems to center on which
" model is better, how well do the
- models reflect reality, and how
. well do models predict reality.

* Ithink the controversy will
. continue around certain areas
of the science of software reli-
ability, and that’s good. It will

. spur the further evolution of
the science of software reliabil-
ity so that it can stay ahead of
the application of software reli-
ability.

Some major challenges I
have faced in applying the tech-
nology have not been from the
lack of theory but from not un-
derstanding how to model how
customers use software and
how to set up appropriate test
environments. By pushing for
more application of software-
reliability techniques within ac-
tual software development, we
can speed the evolution of the
engineering discipline of soft-
ware reliability.

Tousworthe: Can the future
reliability of software be pre-
dicted? Yes, undoubtedly —
but it is a matter of accuracy
and uncertainty as to whether
the prediction is good enough.
The uncertainty can be no bet-
ter than the inherent random
character of the underlying pro-
cess. Use of parameter-estima-
ton methods incorporating
past-process data values can re-
duce the uncertainty, but only
down to the inherent limit.
The random deviation of the
true physical process from sam-
ple function to sample function
cannot be reduced in any
model because it is indepen-
dent of the model.

If the uncertainty of the un-
derlying process is unaccept-
able and uncontrollable, it is
useless to try to develop a pre-

diction model to improve the
uncertainty, because the effort
will fail.

Yu: After estimating the
model parameters, the user can
perform extrapolation to pre-
dict failure intensity and soft-
ware reliability. The user can
also change the process (vary
the model parameters) to
achieve a higher quality level.
Several applications of reliabil-
ity analysis are

establish criteria for de-
termining when system testing
is complete,

+ predict what testing re-
sources are required to achieve
the quality objective,

+ predict software quality
at the time of product release,
and

+ predict the software faults
remaining to plan support staff
after product release.

Brettsdhneider: The only pro-
gram outputs of real value are the
number of latent defects left to be
found and how much more test-
ing s necessary to find them.

The reliability goal should be to
deliver a defect-free product.

Confidence intervals
around software reliability pre-
dictions are almost valueless.
Confidence-interval mathemat-
ics will work only if you have
superior input data. In reality,
software-development pro-
cesses have too many sources of
abnormal variability, especially
processes that concern test
tme. If you were to take all
these sources of variability into
account to correctly compute a
confidence interval, the true
range would be so wide as to
become poindess.

If you get bad results it’s be-
cause you started with bad data.
Collecting good data will be
the most difficult challenge in
performing reliability predic-
dons. Good data will give good

predictions which will give

good correlation with actual
field performance.

Good initial results will
build credibility. Credibility
will help get better data and so
on. To get good data, software-
reliability modeling must be
presented as a nonthreatening
tool that will help developers
make development more suc-

cessful.
Where is the technology going?

Everett: Any engineering dis-
cipline associated with any tech-
nology, software reliability in
particular, must answer two
questions: how do we measure
it? and once we can measure it,
how do we manage it? By man-
aging it I mean understanding
how the measures can be used
to control and ultimately im-
prove software reliability.

I feel the potental for the
management side of software
reliability can be on par with
thatof hardware reliability. A
number of processes associated
with software development can
greatly affect software reliabil-
ity — design reviews, inspec-
tons, requirements specifica-
don, testing, configuration
control, to name a few. The
challenge will be how we use re-
liability measures to properly
manage and improve these pro-
cesses, which in turn will im-
prove the products they produce.

Tausworthe: Comprehensive
modeling of the reliability pro-
cess is moving toward simulat-
ing the injection and removal
of faults and defects over the
entire life cycle, using a suffi-
ciently general model with pa-
rameters that adequately de-
scribe the phenomena taking
place. Determining the product
and process parameters of a set
of actual projects and the
model regression is what opti-

mizes the performance of the
comprehensive model; neural-
network solutions to the regres-
sion may apply. Comparing se-
lected prediction models using
statistical data generated by a
simulated reliability process
may provide a controlled
means to answer today’s con-
troversy over model merits.

Yu: The practical issue of
software reliability is to find a
mathematical function that can
fit the empirical data. On the
basis of the mathematical func-
ton, you can do extrapolation
to predict software quality. The
usefulness of theoretical work is
to provide the physical mean-
ing of the model parameters.
Therefore, you can reuse the
parameters of old projects
when few data points are avail-
able in a new project. In addi-
tion, when the model parame-
ters change significantly from
one project to another, you can
analyze the result to identfy
areas for process improvements.

Brettschneider: 'Those of us
who are interested in software
reliability should make every at-
tempt to promote it — we must
develop commonly available
computer programs to calcu-
late reliability predictions. Fu-
ture model research should
concentrate on the develop-
ment of more robust models
that have fewer requirements
for applicability — asin are-
duced need for strict formal-
isms — are more intuitive, and
are easier to calculate and apply.

Finally, we need continued

investigations into the relation-
ships among process factors, de-
velopment practices, and quality.
The process of searching for the
optimal model is its own chief
benefit. It forces a better under-
standing of what process and
product factors are important to
reliability prediction.

IEEE SOFTWARE 17

Authorized licensed use limited to: University of North Texas. Downloaded on July 27, 2009 at 14:38 from IEEE Xplore. Restrictions apply.

because not every failure results in a defect
removal and some corrections introduce
defects.t

Defect data as predictors. Data collected in
the 1970s from applying early reliability

models shows that the failure rate does not

/ Failure-intensity data

Current {

failure o - - - \ Estimates using o

intensity 1 / reliability model
Failure-intensity

objective - \

Cumulative time

Current time

[— D — S
|
|

Figure 3. Plotting defect data using a reliability model produces a failure-intensity curve. Failure intensity is
the number of failures per time unit. Such a curve can help you predict the execution time needed to achieve a
failure-intensity objective. Musa’s calendar-time component velates execution time to calendar days, based on
constraints involved in applying resources to a project.

Cumulative failures

™ Failure intensity

Time

Figure 4. As the cumulative number of failures rise monotonically over the time, the failure-intensity curve
usually decreases. Typically, the failure-intensity curve for raw data (without curve fitting) will show bursts of
peaks indicating increases and decreases in failure intensity. Failures tend to occur sporadically and ave rest-case
dependent. Testing costs, bowever, tend to vise in a complimentary fashion: As fewer defects lurk in the code, it
takes more man-hours and computer time to detect and locate them.

remain constant — it is nonhomoge-
neous.*” Tndeed, the failure rate usually
decreases as more defects are detected and
corrected, contributing to the system’s
overall reliability.

Figure 3 shows a nonhomogeneous,
Poisson process reliability-growth model
in which failure intensity decreases expo-
nentally with execution time, a property
of John Musa’s basic execution-time
model.

Figure 4 shows that, in unison with de-
creasing failure intensity, the expected cu-
mulative number of failures increases ex-
ponentially to an asymptote with
cumulative execution time. This inverse
relationship is a basis for most reliability
models.

If the observed failure rate is plotted as
a function of cumulative execution time, as
itis in Figure 3, a reliability model can be
statistically fitted to the data points. You
can use the plot of the fitted failure-inten-
sity curve to estimate failure intensity and
the additional execution tme required to
attain the failure-intensity objective.

During this process, the developer
must determine

¢ the estimated failure-intensity peri-
odically during system test;

¢ if the estimated failure intensity is
less than or equal to the objective (if it is,
the software can be released), and

¢ if the estimated failure intensity ex-
ceeds the objecdve (if it does, you must
identify the additional test resources
needed to attain the objective).?

Just as failure intensity decreases expo-
nentially, the cost of detecting a failure and
locating its cause increases in a comple-
mentary exponental fashion. The cost of
correcting defects, on the other hand, gen-
erally remains constant over time because
it depends on relatvely constant factors
like developer expertise and tool availabil-
ity.” Albeit, the cost of correcting defects
in fielded software is higher than the cost
of corrections made early in the develop-
ment cycle.

Defect dassification. Grouping defects
into classes lets you identify their effect on
the system’s overall reliability. It also lets
you weight them according to their crid-

18

JUuLYy 1982

Authorized licensed use limited to: University of North Texas. Downloaded on July 27, 2009 at 14:38 from IEEE Xplore. Restrictions apply.

Incomplete Documentotion 2%

requirements 5%

Interface 6%
Data 6%

Other 7%

Logic design
8%

(A)

Requirements
translation

Software integration
0,

36%

Code 7%

Design 2% N

Requirements 9%

Flight fest
13%

't (B)

Systems
infegration 48%

J

Figure 5. As this example from a US Air Force project shows, you can classify defects by (A) problem type and (B) by the phase in the life cycle in which they are corrected.
In this case, 48 percent of defects were fixed at systems integration; 13 percent at flight tests. The cost to fix defects is highest in these two phases. The software was released
with six percent of problems unvesolved; these problems will likely surface in the field.

cality or severity, in terms of safety and/or

customer cost. Another reason to group

defects by cause is to help pinpoint where

in the life-cycle they are introduced.
Classifying defects in

terms of cause can help

icant effect on improving the process and
reducing a major problem type.

Figure 5b shows that most of the de-

fects were not resolved until the latter de-

velopment stages, when

the cost of repair is the

developers decide where _ highest (as Figure 4
to apply resources. De- (Jassifying defectsin shows).?

velopers can improve the The pie charts in Fig-
reliability — and hence ferms Of (Quse can ure 5 are developer-ori-

quality — of their prod-
ucts by properly focusing
corrective resources on
the biggest problem
areas.!”

Figure 5a shows a
sample defect-classification scheme that
shows a sizeable percentage of problems
occurring in requirements translation. Al-
though the cost of detecting and removing
defects is unknown, it is thought to be less
than in later phases. As with testing, re-
quirements checking islabor intensive, es-
pecially when only a few defects exist. In
this case, targeting the requirements anal-
ysis and design phases could have a signif-

help developers decide
where fo apply
[6SOUICES.

ented because they relate

efects to development
phases. In a user-oriented
approach, the customer
and developer together
classify defects in terms of
the failure or symptom as it presents itself
operationally. Thus, the customer can
clearly understand the level of reliability in
terms of operational needs.

For example, three problem types
might describe a gradient of severity from
catastrophic to more benign:

¢ The system will not perform the
tasks required.

¢ The system will operate in degraded

mode, but with extra operational cost.

¢ The system will operate with minor
dysfuncdon and small extra operational
cost.

"Thus, if the general reliability require-
ment is 1,000 hours of failure-free opera-
tion, this approach would further qualify
the reliability measure to state at what
level of severity failures are acceptable.

This gives the customer better insightinto

operational expectations and promotes
greater customer satisfacdon. However,
this developer-customer dialogue isitselfa
requirements-translation problem and is
defect-prone.

In an environment of limited resources
and tough competition, reliability mea-
surement provides guidance to decide
which known defects are most important
to the customer (if your resources prohibit
fixing all of them) and how to structure
reliability growth testing so as to find the
undiscovered defects that would most se-
verely harm the customer. +

IEEE SOFTWARE

19

Authorized licensed use limited to: University of North Texas. Downloaded on July 27, 2009 at 14:38 from IEEE Xplore. Restrictions apply.

Authorized licensed use limited to: University of North Texas. Downloaded on July 27, 2009 at 14:38 from IEEE Xplore. Restrictions apply.

