
4b In today 's climate
of tight budgets and
schedules, reliability
vzeasurement can
help you deliver the
level o f reliability
your customers need.

Group has used reliability methods to
help gauge the level of latent defects in
hundreds of releases and millions of lines

I E E E S O F T W A R E

is still a large gap between reliability
measurement theory and practice. We
seek to bridge this gap by presenting

Reliability
Measurement:
From Theory
to Practice
FREDERICK T. SHELDON,
General Dynamics, Fort Worth Division
KRISHNA M. KAVI, University of Texas at Arlington

Jet Propulsion Laboratory, Caltech
JAMES T. Yu, AT&T Bell Laboratories

WILLIAM W. EVERETT, AT&T Bell Laboratories

ROBERT C. TAUSWORTHE,

RALPH BRETTSCHNEIDER , Motoroh

P ressure on software en- 1 der, Motorola has found reliability tnea-
p e e r s to produce high-quality software
and meet increasingly stringent schedules 1 ing decide if a release's quality is accept-

surement to be exceedingly useful in help- '
and budgets is growing. In response, reli-
ability measurement has become a signif-
icant factor in quantitatively characteriz-
ing quality and determining when to
release software on the basis of predeter-
mined reliability objectives. In fact, some
US Dept. of Defense organizations now
require software reliability ineasure-
ments.

Motorola's World Wide Systems

able as measured against an ever
improving quality goal: customer expec-
tations. Brettschneider claims that relia-
bility measurement for release control,
plus other initiatives, has in the last four
years produced a hundredfold improve-
ment in the number of defects per thou-
sand lines of source code reported on re-
leased software.

Despite similar testimonials, there

Authorized licensed use limited to: University of North Texas. Downloaded on July 27, 2009 at 14:38 from IEEE Xplore. Restrictions apply.

Figure 1. Reliability m e a s u r m t happens in conjunction with testing and integration, befoe the sojiware is rekased into operations and maintenance. Reliability-
model development is$d by activities in the requirements, design, repair, andoperatim and maintomme phases. During reliability-model drvelopment, you plan h m
to use the sekcted model, set a reliability objehe, and initiate activities to supprt the h e 1 ofsensirivity you needfir data collection (cahdar time, wall-clock time, or
CPU execution time, fw example). Reliability data collectedf;..tfieUedsoJkare can be usejklfir evaluating the accuracy ofpredictions and recalibrating the reliability
model. The reliability model, which incqmates p-rojea-spec$c constraints, tolerances, andsensitivities, should retain this infwmtion so that it y i e h mwe accurate
mea” when it is reused on f i ture pmjem.

measurements evolution from theory to
practice. We served on a panel at the Sym-
posium on Applied Computing in Fay-
etteville, Arkansas, where we outlined re-
liability measurement’s salient issues, basic
concepts, and underlying theory, which
we present in h s article. We also an-
swered three basic ques-
tions about the technol-

surement can be a very effective,
customer-oriented way to determine and
deliver the appropriate level of quality.

REUABIUTY IN THE UFE CYCLE

Reliability is one important measure
that can help developers
understand, manage, and

ogy; our responses are - control a development
summarized in the box on DeVelopefi must process constrained by
p. 16-17. time and cost.

We do not recommend identify Useful The need for a quan-
a specific method and reliability mekics 0s titative of
make n o conclusions. software quality - and
However, we do consider Well 0s h e program’s hence reliability - and
reliability measurement the factors that affect it
to be an important e m , - operational profile. (like operational envi-
ing technology. As o;r
comments indicate, we have an earnest
concern thatsoftware is frequently unre-
liable,andwe believe thatreliability mea-

1 4

shows where reliability measurement fits
in. The effort to improve reliability mea-
surement is fed by efforts in the require-
ments, design, testing and integration, and
operations and maintenance phases.

Influen@ fa&% Many factors influ-
ence the target system’s reliability: What
are its hardwardsofisvare elements? Will
it evolve in function and/or desired reli-
ability? Do its parts run at different
speeds? What are the customer’s expecta-
tions?

Developers must determine what reli-
ability metria are useful and what the
customer considers a failure (including
even minor deficiencies and anomalies).
Fault-tolerant systems require that the de-
veloper carefully distinguish anomalous
internal states that can be tolerated from
the failures that affect a customer’s opera-
tions. Customers, too, maywant to classify

ronmeit, testing meth-
ods, tools, schedules, and cost) has spurred
much research on improving our insight
into the development life cycle. Figure 1

J U L Y 1 9 9 2

Authorized licensed use limited to: University of North Texas. Downloaded on July 27, 2009 at 14:38 from IEEE Xplore. Restrictions apply.

hilures by their severity (if they would af-
fect safety, threaten life, cause a loss of in-
come, or be expensive to repair, for exam-

developer must also identify an
operational profile by gathering informa-
tion on how previous versions were used,
estimating the use of new features, and
verifylng the resulting estimated profile
with the customer.’ The operational pro-
file can help plan test cases and data collec-
tion (possibly classified in terms of both
developer-oriented and user-oriented
characteristics) and methods to coinpen-
sate for special conditions. Special condi-
tions may include the effect of instrumen-
tation on hard real-time scenarios or
accounting for the fundamental differ-
ences among unit test, integration test,
systems integration, and acceptance test.

1).

enced up to a time, and failures experi-
enced within a time interva1.j A new met-

Measurement process Reliability model-
ing, then, has three broad stages.’

+ Assessment. T h e developer makes
some assumptions about the environmen-
tal conditions under which the software
will run. Tlus is an important step because
it is often infeasible to re-create the opera-
tional environment exactly.

+ 12.10del development. T h e developer
derives mathematical formulas to estimate
(or predict) useful system parameters like
failure intensity, number of failures in an
interval, and the probability dismbution
of failure intervals. T h e developer esti-
mates these parameters from real data
using statistical t e c h q u e s like maximum
likelihood estimation, least squares esti-
mation, and Bayesian methods.

+ Meamw”nt and estimation. The de-
veloper uses these parameters to predict
behavior and help plan, maintain, and up-
grade software. However, reliability mea-
surement is typically distinguished from
reliability prediction in that prediction is
based on static metrics, such as size and
complexity, and measurement (or estim-
tion) is based on the dynamic execution
behavior - the failure data collected dur-
ing system test.

Recent work by Yashwant Malaiya,
Nachimuthu Karunanithi, and Pardeep
Venna’shows that some models work bet-
ter in some cases. They have presented

1
~

~

troduction (p-defects). Many reliability
models allow for irnperfea debugging,

zmpirical results from five fault-count
models to compare the predictive validity
3f each model according to three types of
predictability measures (goodness-of-fit,
next-step predictability, and variable-term
predictability).

DEFECTS AND RELIABILITY

Reliability is the probability of failure-
free operation for a specified time in a
specified environment for an intended
DurDose. A “failure”

ric uses timeindependent
This test-case-intensity metric counts the
number of test cases applied per thousand
lines of code to measure the amount of
stress applied to the software during test.
When combined with an estimate of com-
plexity, this metric may be a powerful in-
dicator of reliability prediction andvalida-
tion.

Defed removal. Figure 2 illustrates the
defect-removal process as a state-transi-

tion diagram. Although
L 1

happens when a defect failure occurrence is ran-
causes the software to dom and the probability
oDerate inamromiatelv Rel iob ih is the distribution varies with

Determine the cost-benefit and
1 an acceptable failure occurence. requirements for fixing the defect.

Figure 2. The defect-removal process illustrated as a state-transition diagram. Beginning with the testing
phase, a q s t m with N unknown defects is rxrcuted until (A) a defrct is detected. In the defect-detection phase,
the developer can either @)fix thr defect and return thr jysteni to testing or (C) decidr to defer t-epairfoi-
cost-benefit reasons. Thi.c process continues uutil(0) a suficient amount offirrlure-j?ee operation has occurrrd
and the last intnlrivble defct has been repairrd. D$rm uucoswrd in the relrase state are considerrd either (E)
tolerable nr (fl intnlrrable, in which case the systrm i.r retzirnrd tn the defrct-drtectrrl state.

1 5

Authorized licensed use limited to: University of North Texas. Downloaded on July 27, 2009 at 14:38 from IEEE Xplore. Restrictions apply.


~~~~~ ~ ~ 

MOVING FROM THEORY TOWARD PRACTICE: RELIABILITY PAWEL COMMENTS 
At the Symposium on Ap- 

plied Computing, FrederickT 
Sheldon and Krishna M. &vi 
moderated a panel whose mem- 
bers have more than 3 5 years of 
experience in reliability mea- 
surement. Sheldon and Kavi 
asked each panelist to answer 
three basic questions about reli- 
ability-measurement technol- 
ogy. To conserve space, their 
responses are limited to differ- 
ent and unique comments. 

K??y do we need re l idd ip  technol- 
ogy? 

Everett There is a strong 
need for more customer-ori- 
ented measures of software 

often asked, why do we need 
customer-oriented measures? 
w h y  not just build the best 
product we can? My answer is 
that without customer-oriented 
quality measures, we cannot 
consciously make effective 
trade-offs between cost and the 
delivery time frame. Unfortw 
nately, trade-offs generally 
wind up being made uncon- 
sciously, with the level of qual- 
ity being whatever fits into the 
cost and schedule constraints al- 
ready established. 

most important quality ami- 
butes is reliability. Current 
heavily used measures in soft- 
ware development, such as 
number of faults or faults per 
thousand lines of d e ,  are 
closely tied to the development 
process but are not necessarily 
good measures of quality from 
the customer’s perspective. 
The customer does not neces- 
sarily relate to faults per se, but 
rather to the fdures theywill 
cause. Failures, the fi-equency 
at which they occur, and their 
impact on business are mea- 
sures more closely coupled to 
the customer’s perception of 

quality. when I say this I am 

To the customer, one of the 

quality. 
Reliability tends to be used 

synonymously with hardware 
reliability. However, over the 
years the amount of software 
embedded in our products has 
increased to the point that, for 
many products, the reliability 
of the software dominates that 
of the hardware. The discipline 
of software-reliability engineer- 
ing is emerging, and it will do 
for software what hardware-re- 
liability engineering has done 
for hardware. 

rclr~orthe: There 2s a need 
for this technology. One main 
question concerns what the cri- 

teria are for a suitable model. It 
is necessary to btinguish be- 
tween Mure models and pre- 
diction models of the same phe- 
nomena. These need not be the 
same in all respects, but must 
be compatible in their assump- 
tions about the underlying pro- 
cess. Outpus of prediction 
models should be related to 
risks, while outputs of failure 
models should be related to 
product and process data typi- 
cal of that which can be mea- 
sured. 

There should be sound, in- 
tuitive, plausible, and verifiable 
assumptions basing the models. 
Formahm is necessary because 
empiricism is not enough. We 
have to understand the underly- 
ing physical process and then 
conform that process to empiri- 
cism. In this way, we may use 
empiricism to calibrate the 
models. 

YK I would like to extend 
the scope of software reliability 
to cover the following two 
areas: Estimation of failure in- 
tensity - the number of soft- 
ware fiilures per unit of time - 
and prediction of remaining 
software faults. 

Serious failures, such as out- 

ages, seldom occur in the test- 
ing environment, and software- 
reliability models have little use 
in such an environment. To 
apply software reliability, there 
must be enough software Eul- 
ures identified during the sys- 
tem testing interval. The opera- 
tional profile constitutes the 
input data to test the software 
product To simulate the 
customer environment, the fre- 
quency of each type of input 
data should also be collected 
from customers or similar prod- 
ucts. 

&ettsdneider: Beyond the 
prime customer issue that soft- 
ware is too expensive lies a sec- 
ond major concern: Software is 
frequently unreliable. Though 
different, these two issues are 
related. 

Failure to initially achieve 
reliable software will result in a 
need for additional testing and 
field support, the cost of which 
must be passed on to the 
customer. Unfortunately the re- 
lease decision is usually based 
on an evaluation of the 
software’s expected quality bal- 
anced against its release-date 
commitment. The cost of poor 
quality is then shifted from the 
producer to the consumer. 

My experience in using a 
simplified decision-making ap- 
proach, based on modeling the- 
ory, has been quite successful in 
helping me decide if acceptable 
software quality has been 
achieved and if the software is 
ready for release. 

h the technnlogy ready forupplica- 
tion? 

Everstt: We have seen tre- 
mendous growth in the science 
of software reliability in the last 
1.5 to 20 years, in particular in 
the development of reliability 
models and numerical algo- 

rithms for evaluating such mod- 
els. However, I feel the develop- 
ment of software reliability as 
an engineering discipline has 
lagged behind its development 
as a science. 

More and more of the engi- 
neering discipline will evolve as 
we apply the science to our soft- 
ware. 

My experience is that the 
basic theory is ready to apply 
now. As part of our education 
and training department at 
AT&T Bell Labs, I have been 
working with a number of pro- 
jects to move software reliabil- 
ity from theory to practice. 
Some of the areas and ways in 
which software reliability has 
been and is being applied in- 
clude 

of system test, 

test time to achieve a specified 
reliability objective, 

files, 

tives, 

respect to reliability, 

to change testing environ- 
ments, and 

measures can be used during 
development testing. 

There tend to be enough 
initial benefits to justify the in- 
troduction of the technology, 
but we should keep its initial 
use simple. I have seen a num- 
ber of successes in its applica- 
tion, in particular during sys- 
tem test, to monitor test 
progress and estimate test coni- 
pletion. 

I would be remiss if I did 
not say we have also seen some 
setbacks. However, I have not 
seen any setbacks that I can re- 
late to major deficiencies in the 
theory of software reliability. 

4 monitoring the progress 

4 predicting elapsed system 

4 delining operational pro- 

4 setting reliability objec- 

4 evaluating designs with 

4 using reliability measures 

4 exploring how reliability 

J U L Y  1 9 9 2  16 

Authorized licensed use limited to: University of North Texas. Downloaded on July 27, 2009 at 14:38 from IEEE Xplore.  Restrictions apply. 



There has been a lot of dis- 
cussion over the controversy 
surrounding software reliabil- 
ity. Much of the controversy 
seems to center on which 
model is better, how well do the 
models reflect reality, and how 
well do models predict reality. 

I think the controversy will 
continue around certain areas 
of the science of software reli- 
ability, and that’s good. It will 
spur the further evolution of 
the science of software reliabil- 
ity so that it can stay ahead of 
the application of software reli- 
abdity. 

Some major challenges I 
have faced in applying the tech- 
nology have not been from the 
lack of theory but from not un- 
derstandmg how to model how 
customers use software and 
how to set up appropriate test 
environments. By pushing for 
more application of software- 
reliability techniques within ac- 
tual software development, we 
can speed the evolution of the 
engineering discipline of soft- 
ware reliability. 

Tousworthe: Can the future 
reliability of software be pre- 
dicted? Yes, undoubtedy- 
but it is a matter of accuracy 
and uncertainty as to whether 
the prediction is good enough. 
The uncertainty can be no bet- 
ter than the inherent random 
character of the underlyingpro- 
cess. Use of parameter-estima- 
tion methods incorporating 
past-process data values can re- 
duce the uncertainty, but only 
down to the inherent limit. 
The random deviation of the 
true physical process from sam- 
ple function to sample function 
cannot be reduced in any 
model because it is indepen- 
dent of the model. 

derlying process is unaccept- 
able and uncontrollable, it is 
useless to try to develop a pre- 

If the uncertainty of the un- 

diction model to iniprove the 
uncertainty, because the effort 
will fail. 

YE After estimating the 
model parameters, the user can 
perform extrapolation to pre- 
dict failure intensity and soft- 
ware reliability. The user can 
also change the process (vary 
the model parameters) to 
achieve a higher quality level. 
Several applications of reliabil- 
ity analysis are 

termining when system testing 
is complete, 

sources are required to achieve 
the quality objective, 

+ predict software quality 
at the time of product release, 
and 

+ predict the software faults 
remaining to plan support staff 
after product release. 

+ establish criteria for de- 

+ predict what testing re- 

httschneidec The only pro- 
gram outputs of real value are the 
number of latent defects left to be 
found and how much more test- 
ing is necessary to tind them. 
The rehbility goal should be to 
deliver a defect-free product 

Confidence intervals 
around software reliability pre- 
dictions are almost valueless. 
Confidence-interval mathemat- 
ics will work only if you have 
superior input data. In reality, 
software-development pro- 
cesses have too many sources of 
abnormal variability, especially 
processes that concern test 
time. If you were to take all 
these sources of variability into 
account to correctly compute a 
cxmfidence interval, the true 
range would be so wide as to 
become pointless. 

If you get bad results it’s b e  
cause you started with bad data. 
Collecting good data will be 
the most difficult challenge in 
performing reliability predic- 
tions. Good data will give good 

predictions whch will give 
good correlation with acmal 
field perfonnance. 

C m d  initial results will 
build credibdity. Credibility 
will help get better data and so 
on. To get good data, software- 
reliability modeling must be 
presented as a nonthreatening 
tool that will help developers 
make development more suc- 
CeSSfUl. 

where is the technology going? 

Everett: Any engineering dis- 
cipline associated with any tech- 
nology, software reliability in 
particular, must answer two 
questions: how do we measure 
it? and once we a n  measure it, 
how do we manage it? By man- 
aging it I mean understanding 
how the measures can be used 
to control and ultimately irn- 
prove software reliability. 

I feel the potential for the 
management side of software 
reliability can be on par with 
that of hardware reliability. A 
number of processes associated 
with software development a n  
greatly affect software reliabil- 
ity- design reviews, inspec- 
tions, requirements specifica- 
tion, testing, configuration 
control, to name a few. The 
challenge will be how we use re- 
liability measures to properly 
manage and iniprove these pro- 
cesses, which in turn will im- 
prove the products they produce. 

Ta~~wwthe: Comprehensive 
modeling of the reliability pro- 
cess is moving toward simulat- 
ing the injection and removal 
of faults and defects over the 
entire life cycle, using a suffi- 
ciently general model with pa- 
rameters that adequately de- 
scribe the phenomena taking 
place. Determining the product 
and process parameters of a set 
of actual projects and the 
model regression is what opti- 

Yu: The practical issue of 
software reliability is to tind a 
nmhrmatical function that can 
fit the empirical data. On the 
basis ofthe mathematical func- 
tion, you can do extrapolation 
to predict software quality. The 
usefulness of theoretical work is 
to prmide the physical mean- 
ing of the model parameters. 
Therefore, you can reuse the 
parameters of old projects 
when few data points are avail- 
able in a new projea. In addi- 
tion, when the model parame- 
ters change significantly from 
one project to another, you can 
analyze the result to identi$ 
areas for process improvements 

Brettschneider: Those of us 
who are interested in soha re  
reliability should make every at- 
tempt to promote it - we must 
develop commonly available 
computer programs to calcu- 
late reliability predicdons. Fu- 
ture model research should 
concentrate on the develop- 
ment of more robust models 
that have fewer requirements 
for applicability - as in a re- 
duced need for strict formal- 
isms - are more intuitive, ancl 
are easier to calculate and apply, 

E‘indly, we need continued 
invmtig~tions into the relation- 
s h p  ‘among prtxeis factors, de- 
velopment practices, and qualiy. 
The process ofsearchnp for the 
optimal model is its oun chief 
benefit. It forces a better under- 
stinding ofwhat process and 
prtxlucz hctors arc irnportait to 
relialility prediction. 

mizes the performaice of the 
comprehensi\r model; neural- 
nehVOrk solutioiis to the regi-es- 
sion may apply. Comparing se- 
lected prediction niodcls using 
statistical data generated by a 
siinulated reliability process 
may provide a controllcd 
means to answer today’s con- 
troversy over model merits. 

1 7  I E E E  S O F T W A R E  

Authorized licensed use limited to: University of North Texas. Downloaded on July 27, 2009 at 14:38 from IEEE Xplore.  Restrictions apply. 



I)ecauw not cvery failure results in a defect 
irmoi a1 and some corrccrions introduce 
Jefects.+ 

.- 

Defect data as prediior~. Data collected in 
the 1970s from applying early reliability 
models shows that the failure rate does not 

.. 1 

Figure 3. l’lotting defect data using a reliability model produces a failure-intensity cume. Failure intensity is 
the number offailures per time unit. Such a cume can help you predict the exerution time needed to  achieve a 
f;ailiire-irrteri.rit)’ oljectire. AWu.ra’s calendar-time component relates execution time to calendzr days, based on 
ronstraiiit.s inwlned in applying resoums to  a pyoject. 

Time 

-- 
- -_ 

Figure 4 .  As the cumulative number offailures m e  monotonically over the nme, the fiilure-intensity rume 
usually decreases Typically, the failure-intensity rumefor raw data (without curve fitting) willshow bursts of 
peaks indicating iiicreaseJ and decreases in failure mtmi ty  Failures tend to ocrursporadically and are test-case 
dependent Testing costs, hmueoer, tend to m e  in a complimentary fashion As fwerde fem lurk i n  the code, it 
taker mare man-hours and computer time t o  detect and locate them 

remain constant - it is nonhomoge- 
n e o ~ s . ~ ? ~  Indeed, the failure rate usually 
decreases as more defects are detected and 
corrected, contributing to the system’s 
overall reliability. 

Figure 3 shows a nonhomogeneous, 
Poisson process reliability-growth model 
in which failure intensity decreases expo- 
nentially with execution time, a property 
of John Musa’s basic execution-time 
model. 

Figure 4 shows that, in unison with de- 
creasing failure intensity, the expected cu- 
mulative number of failures increases ex- 
ponentially t o  an asymptote with 
cumulative execution time. T h s  inverse 
relationship is a basis for most reliability 
models. 

If the observed failure rate is plotted as 
a function of cumulative execution time, as 
it is in Figure 3, a reliability model can be 
statistically fitted to the data points. You 
can use the plot of the fitted failure-inten- 
sity curve to estimate failure intensity and 
the additional execution time required to 
attain the failure-intensity objective. 

During this process, the developer 
must determine 

+ the estimated failure-intensity peri- 
odically during system test; 

+ if the estimated failure intensity is 
less than or equal to the objective (if it is, 
the software can be released), and 

+ if the estimated failure intensity ex- 
ceeds the objective (if it does, you must 
identify the additional test resources 
needed to attain the objective).8 

Just as failure intensity decreases expo- 
nentially, the cost of detecting a failure and 
locating its cause increases in a comple- 
mentary exponential fashion. The  cost of 
correcting defects, on the other hand,gm- 
erally remains constant over time because 
it depends on relatively constant factors 
like developer expertise and tool availabil- 
ity.9 Albeit, the cost of correcting defects 
in fielded software is higher than the cost 
of corrections made early in the develop- 
ment cycle. 

Defect classification. Grouping defects 
into classes lets you identify their effea on 
the system’s overall reliability. It also lets 
you weight them according to their criti- 

1 8  J U L Y  1 9 9 2  

Authorized licensed use limited to: University of North Texas. Downloaded on July 27, 2009 at 14:38 from IEEE Xplore.  Restrictions apply. 



Figure 5. As this example from a US Air Fwceprojectshows, you can clas& defictsby (A) problem type and (B) by the phase in the lify y l e  in rhicb thqv alp con-ected. 
I n  this case, 48percent of defects were fued at qstems integration; 13 percent atjlight tests. The m t  tv fi.7 deficts i.7 highest in these two phases. The svfi m e  zas released 
with six percent ofproblems unresolved; these problems will likely s-urfce in thejeki. 

cality or severity, in terms of safety and/or 
customer cost. Another reason to group 
defects by cause is to help pinpoint where 
in the life-cycle they are introduced. 

Classifying defects in 

icant effect on improving the process and 
reducing a major problem type. 

Figure 5b shows that most of the de- 
fects were not resolved until the latter de- 

velopment stages, when 
terms of cause can help the cost of repair is the 
developers decide where - highest  (as Figure 4 
to apply resources. De- ClaSSifvinQ defects in shows)? 
velopers can improve the The  pie charts in Fig- 
reliability - and hence of;ause can ure 5 are developer-ori- 
quahty - of their prod- help developers decide ented because they relate 
ucts by properly focusing defects to development 
corrective resources on where t0 apply phases. ~n a user-oriented 

approach, the customer 
resources. and developer together 

the biggest problem 
areas.'0 

Figure Sa shows a 
sample defect-classification scheme that 
shows a sizeable percentage of problems 
occurring in requirements translation. Al- 
though the cost of detecting and removing 
defects is unknown, it is thought to be less 
than in later phases. As with testing, re- 
quirements checlung is labor intensive, es- 
pecially when only a few defects exist. In 
h s  case, targeting the requirements anal- 
ysis and design phases could have a signif- 

classify defects in terms of 
the failure or symptom as it presents itself 
operationally. Thus, the customer can 
clearly understand the level of reliability in 
terms of operational needs. 

For example, three problem types 
might describe a gradient of severity from 
catastrophic to more benign: 

+ The system will not perform the 
tasks required. 

+ The  system will operate in degraded 

mode, but with extra operational cost. 
+ The system will operate with minor 

dysfunction and small extra operational 

Thus, if the general reliability require- 
ment is 1,000 hours of failure-free opera- 
tion, h s  approach would further qualify 
the reliability measure to state at what 
level of severity failures are acceptable. 
This gives the customer better insight into 
operational expectations and promotes 
greater customer satisfaction. However, 
h s  developer-customer dialogue is itself a 
requirements-translation problem and is 
defect-prone. 

cost. 

n an environment of limited resources l and tough competition, reliability mea- 
surement provides guidance to decide 
which known defects are most important 
to the customer (ifyour resources prohibit 
fixing all of them) and how to smcture 
reliability growth testing so as to iind the 
undiscovered defects that would most se- 
verely harm the customer. + 

I E E E  S O F T W A R E  1 9  

Authorized licensed use limited to: University of North Texas. Downloaded on July 27, 2009 at 14:38 from IEEE Xplore.  Restrictions apply. 



ACKNOWLEDGMENTS 
We thank Paul Grabow of Baylor University and Bill Carroll and Seung-Min Yang of the University of 

Texas at Arlington for their comments on early drafts. Dick Clothier from the US Air Force’s Generic Inte- 
grated Maintenance Diagnostics p r o p m  office and some friends at Texas Instruments tangibly illustrated reli- 
ability measurement’s importance and practical application (including standardization). Dave Sundsnom of 
General Dynamics, Fort Worth Division, and Texas Christian University provided commens and support. 
Richard Reese and U‘iiliam Rumbley of General Dynamics, Fort Worth Division, conmbuted greatly to the 
readability. The ZEEE Sofiwure reviewers gave us constructive comments in untangling and clarifymg the con- 
mbutions of many people. 

REFERENCES 
1. R. Brettschneider, “IsYour Software Ready for Release?”ZEEE Sojiwure, July 1989, pp. 100-102, 108. 
2. ET. Sheldon et al., “Software Reliability Measurement Theory, Practice, and Controversy,” Pmr. S y m p .  

3. J.D. Musa, “Engineenng Software Systems Development, Acquisition, and Use with Software Reliability 

4. Y K  Malaiya and P.K Srimani, Sofiwure Reliability Models: TheuretuulDeveh~ts, Evaluatim, md Appliu- 

5. R.C. Tausworthe, “A General Software Reliabllity Process Simulation Technique,” Pub. 91-7, Jet Propul- 

6. J.D. ‘Vusa, A. Iannino, and K. Okumoto, Sofhuure Reliability Memrement, €‘redidion, Appliution, McGraw- 

7. B. Littlewood, “Stochastic Reliability-Growth: AModel for Fault-Removal in Computer Programs and 

8. W.K. Ehrlich, S.K Lee, and R.H. Molisani, “Applying Reliability Measurement: A Case Study,” IEEE 

9. E T  Sheldon, “Software Development and Reliability Modeling: Software Life Cycle Model,” masters the- 

.4pplied Computing, IEEE CS Press, Los Alamitos, Calif., 1990. 

Measurement,” IEEE CS Press Videotapes and Video Notes, Los Alamitos, Calif., 1989. 

tm, IEEE CS Press, Los Alamitos, Calif., 1991. 

sion Laboratory, Pasadena, Calif., Apr. 1991, pp.1-53. 

Hill, hTew York, 1987. 

Hardware Designs,”ZEEE Tram. Reliability, Oct. 1981, pp. 3 13-320. 

Sofiware, Mar. 1990, pp. 5644. 

sis, University ofTexas, .4rlington, 1988. 

EFG?Sofiwure,July 1991,pp. 11-23. 
10. WS. Humphrey, T.R. Snyder, and R.R. Willis, “Software Process Improvement a t  Hughes Aircraft,” 

FrederickT. Sheldon is a semor engmeer and technical lead for Genenc Integrated 
Mamtenance Diagnosnc Systems at General Dynamics, Fort Worth Division HE inter- 
ests are reliabllity, real-hme, fault-tolerant systems, computer architectures, specificahon 
and sunulanon and modehng 

Sheldon received a BS in microbiology and a BS in computer saence, both from the 
University ofMmnesota at Mnneapohs %.Paul, and an MS m computer science from 
the UniversityofTexas athhngton, where he is a PhD candidate. Sheldon received a 
NASA Graduate Student Fellowship from Langley Research Center, Virgmia He IS a 
student member of the IEEE Computer Smety, IEEE Reliabllity Society, AGM, Amen 
can hShhXe ofAeronauncs and Astronauncs, the Dallas-Fort Worth hsocianon for Sof 

ware-Enpeenng Excellence, Tau Beta Pi, and Upsilon Pi Epsilon. 

Krishna M. Kati is a professor of computer-science enpeenng  at the Umversit). of 
Texas at Arlmgton His mterests are computer archtecmre, performance and rehabllity 
analysis, formal speaficahon and program venficanon, and real-time systems 

Kam received a BS in electrical engmeenng from the Indlan Insntute of Science, Bar 
galore, and an MS and a PhD m computer sclence from Southern Methodist University 
He is an editor f or IEEE Computer Society Press 

Address queshons about this amcle to Sheldon at General Dynamics Fort north Division, PO Box 748, Mail Zont 
2291, EortWorth,TX 76101,htemetsheldon@cse uta edu 

Robert C .  Tausworthe is 
senior research engineer and 
chief technologist of the In- 
formation Systems Division 
of the Jet Propulsion Labora- 
tory at the California Insti- 
tute ofTechnology. His soft- 
ware interests are 
development-process model- 
ing, simulation, and im- 

provement. He has written the two-volume Standard- 
ized Devehpnent of Computer Sofiwure (Prentice-Hall, 
1976, 1979), 1.5 papers on software methodology and 
analysis, and more than 100 papers on communication 
theory and mathematics. 

Tausworthe received a BS in electrical engineering 
from New Mexico State University, and an MS and a 
PhD in electrical engineering from the California Insti- 
tute ofTechnology. He IS an IEEE Fellow, and a mem- 
ber of AGM and Sigma Xi. 

James T. Yu is a distin- 
guished member of the 
technical staffatAT&T 
Bell Laboratories. His re- 
search interests are quality 
measurement and manage- 
ment, quality modeling and 
prediction, object-oriented 
programming, and develop- 
ment methodolow. 

Yu received a BS in electrical engineering from 
National Taiwan University, Taipei, and an MS and a 
PhD in computer science from Purdue University. 
He  is a member of the IEEE Camputer Society. 

Ralph Brettschneider is 
software quality-assurance 
manager for Motorola’s Mi- 
croprocessor and Memory 
Technologies Group. Hk in- 
terests are managing quality 
assurance, memn,  and reli- 
ability modeling. 

Bremchneider received 
a BS in biochemisw from 

the University of Houston and an MBA from Lake 
Forest Graduate School ofManagement, Illinoi?. 

.~ 

20 

Cxlorado School ofhlines and a PhD in applied math- 
ematics from the Califomia Institute of Technolog). 

J U L Y  1 9 9 2  

Authorized licensed use limited to: University of North Texas. Downloaded on July 27, 2009 at 14:38 from IEEE Xplore.  Restrictions apply. 


