
Volume 3, No. 1, Jan-Feb 2012

International Journal of Advanced Research in Computer Science

RESEARCH PAPER

Available Online at www.ijarcs.info

© 2010, IJARCS All Rights Reserved 114

ISSN No. 0976-5697

A Smart Cache Designed for Embedded Applications

Afrin Naz*
Department of Computer Science and Information Systems

West Virginia University Institute of Technology

Montgomery, USA

afrin.naz@mail.wvu.edu

Krishna M. Kavi
Department of Computer Science and Engineering

University Of North Texas

Denton, USA

Kavi@cs.unt.edu

Abstract: In this paper, we extend our previous investigation of split array and scalar data caches to embedded systems. More specifically we explore
reconfigurable data caches where L-1 data caches are optimally partitioned into scalar caches augmented with victim caches and array caches. We do
not change cache block size or set-associativities, making it easier to reconfigure cache banks. We also evaluate how any unused portions of cache

resources can be used as prefetch buffers and branch target buffers to further improve the performance of applications. Since embedded systems
require very careful management of available resources, our approach to configuring L-1 caches can lead to better performance and better energy
savings.

Keywords: Reconfigurability, Embedded systems, Cache Memories, Split Caches, Spatial Locality, Temporal Locality, Prefetching.

I. INTRODUCTION

For embedded applications, it is necessary to provide the
required performance within specified size and power
budgets. Studies have found that the on-chip cache is
responsible for 50% of the power consumed by an embedded
processor [17]. Therefore, it is worthwhile investigating new
cache organizations to address both performance and power
requirements of embedded applications. In this paper we
explore how to design reconfigurable caches that achieve
high performance for embedded applications while
remaining both energy and area efficient.

For the last two decades computer architects have
proposed various cache-control mechanisms and novel cache
architectures that detect program access patterns and fine-
tune cache policies to improve both the overall cache use and
data localities for desktop applications. Major cache
optimization techniques (to improve either or both miss rate
and miss penalty) include increasing block size and cache
size, increasing associativity, complementing the regular
cache with victim cache, prefetching data, including
additional cache hierarchies. Since for embedded
applications it is necessary to provide the required
performance within specified size and power budgets, most
of these techniques often are not implemented. In our
previous work [20] we have studied each of these different
cache-control mechanisms and performed comprehensive
evaluation of our proposed partitioned caches. Our results
demonstrated that split-caches can outperform all of these
conventional cache optimization techniques. In this paper we
adapt and further extend these studies for embedded systems,
with the primary goal of energy savings while maintaining
execution performance, yet using significantly smaller data
caches. In addition to partitioning data caches into array (or
stream) and scalar caches, we investigate how the split
caches can be optimally reconfigured for each application.
Our studies show significant savings in power and cache
capacities. By using these saved area and power for other

architectural features to implement different cache
optimization techniques, additional performance gains can be
achieved for embedded applications.

We assume that caches can be designed to permit
reconfigurability [10]. Previous studies investigated
configuring block sizes and set-associativities. In this paper
we only explore configuring caches by changing cache sizes,
without changing associativity or block sizes. The
reconfigurability is achieved by using a configuration vector
that can be loaded with a new configuration before an
application starts executing. The optimal cache sizes are
explored off-line by searching through possible
configurations. Our studies show that for L-1 cache system,
reconfigurable caches consisting of an instruction cache with
prefetching and split data caches (scalar data cache
augmented with victim cache, and a separate array data
cache) are effective for embedded systems. With such a L-1
cache organization for embedded applications, our results
show significant reductions in the number of cache misses,
translating into reduced cache access times; reductions in
required cache capacities, power consumptions and reduction
in the number of execution cycles. This is primarily because
we used separate caches which eliminate conflict among
different data type that exhibit divergent access behaviors.
Since lower miss rates at L-1 reduce the number of times one
needs to access L-2 cache, we can reduce the size of L-2
cache. This saved area can be used for other purposes or
further power reductions can be achieved by partially or
completely shutting down L-2 caches. The energy savings
result from the reduced number of cache misses, which in
turn reduces the number of trips to higher levels of
memories, often crossing chip boundaries.

The key contributions of this work are as follows.
While partitioned caches have been explored previously,

those studies relied on dynamically detecting spatial and

temporal localities and directing cache accesses to different

cache partitions. Dynamic detection requires additional

hardware. Also the identification of different locality types

requires observation of hundreds or even thousands of

Afrin Naz et al, International Journal of Advanced Research in Computer Science, 3 (1), Jan –Feb, 2012,114-122

© 2010, IJARCS All Rights Reserved 115

memory accesses, and this leads to delays in adapting the

caches for different locality types. In our research we use

compile time analyses to detect array (or stream) and scalar

accesses. This can be achieved by using different memory

access instructions for each data type (e.g.,

Array_Load/Array_store and Load/Store). In our design, we

first address the problem of improving L-1 data cache

performance for embedded systems through the use of

separate array and scalar data caches. We extend our

architecture by augmenting the scalar cache with a victim

cache [6], and augmenting instruction caches with prefetch
buffers. We exhaustively explore optimal array, scalar and

instruction cache sizes for each application, to achieve

desired levels of energy savings while maintaining required

performance levels. The analysis to identify optimal cache

configurations is conducted off-line. These analyses are

used to customize caches for each application by setting

configuration vectors. Our reconfigurability leads to

significant savings in cache capacities.

Prefetching is not popular for embedded applications as

such techniques require additional buffers to store

prefetched instructions (or data). We show that some of the
unused cache portions resulting from our optimally

reconfigured L-1 and L-2 caches can be used for instruction

prefetching, thus eliminating the need for additional buffer

space. Similarly, while branch prediction and branch target

buffers have been used for desktop computer systems, such

techniques add to the hardware complexity and lead to

additional power consumption. By using the unused portion

of caches resulting from our reconfigurable caches, we can

explore branch prediction and branch target buffers without

requiring additional buffer space. Finally we also explored

the energy savings if the unused cache partitions are shut
down.

The rest of the paper is organized as follows. Section 2

describes the architectural design of our reconfigurable

cache. In section 3 we describe the benchmarks and

simulation environment used in our study. In section 4 we

evaluate our reconfigurable L-1 and L-2 caches. In section 5

we evaluate two different possible uses of silicon area

savings resulting from our cache organizations. In section 6

we provide a survey of related work. Finally in section 7 we

present our conclusions and possible future research.

II. ARCHITECTURAL DESIGN OF

RECONFIGURABLE CACHE

Figure 1 shows our reconfigurable split data cache

architecture, with L-1 array and scalar data caches, victim

cache with scalar data cache, the L-1 instruction cache

augmented by a small prefetching buffer and L-2 instruction

and data caches. For our purpose of the experiments in this

study, we marked traces as array accesses and scalar

accesses. We identified array references by assuming that

such references involve some form of indexing. While we

cannot assure that all array data items are captured by our

method, our analyses for selected sample programs show

that most of the array data items (better than 99%) have

been correctly identified. In an actual implementation of

split caches, compiler will allocate data items to array and

scalar cache portions, and use different memory access

instructions for each portion (viz., array_load/array_store

and load/store).
In order to implement reconfigurable caches, only a small

amount of additional logic is required. Additional wiring is
also necessary from the cache to the processor for directing
data to/from the various partitions. The most challenging part
in designing a reconfigurable cache is the implementation of
a mechanism to divide the cache into different (variable
sized) partitions and designing an addressing scheme that can
address any partition. Ranganathan et al in [10] have already
proposed two partitioning and addressing schemes:
―Associativity based partitioning‖ and ―Overlapped wide-tag
partitioning‖. In our design we use ―Overlapped wide-tag
partitioning‖ scheme. In this scheme, the key challenge is to
devise a mechanism so that the size of the tag array can be
dynamically changed with the size of partitions (since the
number of bits in a tag and index fields of the address will
vary based on the size of the partition). We restrict the size of
each partition to a power of 2 and support a limited number
of possible configurations (usually two or three). A
reconfigurable cache with N partitions must accept N
addresses and generate N hit/miss signals. In order to track
the number and sizes of the partitions and control hit/miss
signals, a special hardware register (viz., configuration
vector) is needed. This register will be a part of the processor
state [10].

Figure. 1. Reconfigurable split cache organization

A reconfigurable cache can be used in different ways.

The best configuration for an application can be determined

by executing applications with different configurations.

Software profiling tools can be used to identify portions of

code that exhibit different cache behaviors. Reconfiguration

can also be implemented dynamically with appropriate

hardware profiling and an automatic cache tuner. However

this requires additional hardware to profile applications. For

L1 level we perform exhaustive search to find the best

configuration offline. For L2 we explored offline to find

configurations that reduce the silicon area. For both cases

the configuration vector is set appropriately to customize

caches for each application.

Afrin Naz et al, International Journal of Advanced Research in Computer Science, 3 (1), Jan –Feb, 2012,114-122

© 2010, IJARCS All Rights Reserved 116

III. EXPERIMENTAL METHODS

In this section we describe the experimental framework
and the benchmarks used for this study. We used benchmark
programs from the MiBench suite [5]. MiBench includes
benchmarks from several representative embedded
application domains: (1) Automotive and Industrial Control,

(2) Office Automation, (3) Networking, (4) Security, (5)
Consumer and (6) Telecommunications. For our study we
included selected programs from these application domains.
The descriptions of the benchmarks used in our studies are
listed in Table 1.

Table 1: Descriptions of benchmarks

Benchmark Class Description % of

load/store

Name

in Figure

bit counts Auto./Industrial Test bit manipulation 10 bc

Qsort Auto./Industrial quick sort 52 qs

dijkstra Network Shortest path problem 34.8 dj

blowfish Network Encription/decription 29 bf

Sha Security Secure Hash Algorithm 19 sh

rijndael Security Encryption Standard 34 ri

string search Office Search mechanism 25 ss

Adpcm Telecomm Variation of PCM standard 7 ad

CRC32 Telecomm Redundency check 36 cr

FFT Telecomm Fast Fourier Transform 23 ff

Table 2: Default parameters defined by SimpleScalar

Fetch queue size 4 LSQ 8

Fetch speed 1 FUs alu:4, mult:1, memport:2, fpalu:4,

Decode, width 4 Memory latency 18 cycles for first chunk, 2 thereafter

Issue width 4 out-of-order Memory width 8 bytes

Commit width 4 Instruction TLB 16-way, 4096 byte page, 4-way, LRU, 30

cycle miss penalty

RUU (window) size 16 Data TLB 32-way, 4096 byte page, 4-way, LRU, 30

cycle miss penalty

Our experimental environment is built on the

SimpleScalar (version 3.0d) simulation tool set [3], modeling
an out-of-order speculative processor with a two-level cache
hierarchy. We rely on default parameters used by
SimpleScalar and are shown in Table 2. The base cache
system, against which we compare our designs, uses an 8k
byte L-1 instruction cache, an 8k byte L-1 data cache, a 32k
byte L-2 instruction cache and a 32k byte L-2 data cache. We
used a modified CACTI [16] timing model to obtain area,
access time and power overheads incurred by reconfigurable
caches. Our analyses do account for additional hardware
needed for reconfiguration.

IV. EVALUATION OF RECONFIGURABLE

SPLIT CACHE

In the following two sections we describe our strategies

for reducing power consumption while maintaining

performance of caches.

A. Results with L-1 Data and Instruction Caches:

We believe that the main problem with data cache is the
negative interaction between two different locality types -
temporal and spatial localities, exhibited by different data
types. To solve this problem, for L-1 data cache, we use
separate scalar and array (or stream) caches, and augment
direct mapped scalar caches with a small victim cache. As
noted previously, in a real system, compiler will assign data
to array and scalar cache portions, and use separate
instructions to access these portions (e.g., load/store and
array_load/array_store). In addition, with reconfigurability

we permit varying the sizes of scalar and array caches for
each application. We augment our L-1 instruction cache with
a small buffer to permit for effective prefetching of
instructions. Even with the additional power needed for
prefetching, we show significant reductions in total power
consumed by all our caches (by 47% on average). The three
series in Figure 2 represent percentage reductions in power,
chip area and access times for L-1 instruction and data
caches respectively.

In order to obtain these results, we exhaustively searched
for optimal cache sizes for each cache structure (array, scalar
and instruction cache). In this figure we also show the
average power, area and cache access time across all the
benchmarks used in our experiments (last series). As can be
seen, for instruction cache, on average we achieve reductions
of 47% in power, 95% in area and 37% in cache access
times. Here it should be mentioned that for benchmark ―ss‖
we did not achieve any reductions in power or access times.
For data caches, on average we show more than 50%
reduction in both power and area consumption. For each of
the benchmarks we also achieve reduction in cache access
times. However, considering the worst case such as ―qs‖ and
―bf‖, less than 10% access time reduction was achieved. In
exploring optimal configuration, we varied only cache-size
(not line-size or associativity)—we start from smaller to
larger sizes (from 256 to 8K bytes). At L-1, for each
benchmark we exhaustively explored all cache size
combinations for array, scalar and instruction caches to find
the best configuration those results in optimal power, area
and access times. In Table 3 we provide the optimum
configurations for each benchmark.

Afrin Naz et al, International Journal of Advanced Research in Computer Science, 3 (1), Jan –Feb, 2012,114-122

© 2010, IJARCS All Rights Reserved 117

0

20

40

60

80

100

bc qs dj bf sh ri ss ad cr ff avg

(b)

power

area

time

Figure. 2. Percentage reduction of power, area and cache access time for L-1 (a) instruction and (b) data caches

Figure. 3. Percentage reduction of number of access in L-2 caches

Table 3: Cache configurations yielding lowest power, area and cache access time

Benchmark L-1Instruction cache Array

cache

Scalar

cache

L-2 Instruction

cache

L-2 Data

Cache

bit counts 256 bytes 512 bytes 512 bytes 2k 2k

qsort 256 bytes 1k 4k 2k 32k

dijkstra 1k 512 bytes 4k 4k 8k

blowfish 1k 512 bytes 4k 2k 8k

sha 256 bytes 512 bytes 1k 1k 8k

rijndael 512 bytes 1k 4k 4k 32k

stringsearch 256 bytes 512 bytes 1k 1k 16k

adpcm 256 bytes 1k 512 bytes 1k 4k

CRC32 256 bytes 512 bytes 512 bytes 4k 2k

FFT 1k 1k 4k 4k 16k

Afrin Naz et al, International Journal of Advanced Research in Computer Science, 3 (1), Jan –Feb, 2012,114-122

© 2010, IJARCS All Rights Reserved 118

B. Results with L-2 Data and Instruction Caches:

Unlike L-1 caches where cache behavior is mainly

controlled by locality types, for L-2 cache, the main concern

is the number of misses from L-1 caches. For most of the

benchmarks (except ―sh‖, ―qs‖ and ―ss‖), our L-1 caches

achieved excellent reductions in the number of cache misses,

resulting in fewer visits to L-2 caches. For benchmark ―ff‖
we were able to achieve as much as 96% reduction in the

number of misses. In Figure 3 we show the percentage

reduction in the total number of L-2 accesses (which is the

number of misses in L-1 caches) compared to those in the

base cache system. This implies that we can reduce the size

of L-2 caches, yet maintain the desired level of performance

and the size of L-2 caches must be configured based on each

application. Since the number of access to L-2 caches is

small, we did not see a need for split array and scalar L-2

data caches. We also felt that it is unnecessary to perform an

exhaustive search of all possible L-2 cache configurations (as
done for L-1 cache, see Figure 2 and Table 3). We only

explored configurations that reduce the silicon area needed

for L-2 caches. We start with a very small L-2 caches, and

continuously increase the sizes of the caches until no further

reductions in misses are achieved (compared to the base

configuration of 32KB L-2 instruction and data caches).

Since both cache access time and power consumption is

determined by the number of misses, this method allows us

to find the smallest cache sufficient to meet performance

requirements without increasing power consumption.

The three series in Figure 4 represent the percentage
reductions in area, access time and power for L-2 instruction

(a) and data (b) caches respectively. In this figure we also

show the average area, cache access time and power across

all the benchmarks used in our experiments (last series in the

figures). As can be seen, for instruction cache, on average we

achieve more than 80% reductions in power, in area and in

cache access times. At the same time we have achieved

significant improvement for each benchmark. However for

data caches we can observe a different situation. Although on

average we have achieved more than 50% reductions in

power, in area and in cache access times, for some
benchmarks we did not achieve any improvement. As we can

see from Figure 4(b) for benchmark ―qs‖ we did not achieve

any reductions in power or area consumptions. Similarly for

benchmark ―ri‖ we did not achieve any reductions in area

consumptions.

Our goal is not only to reduce silicon area, cache access

time and power consumption, but also to confirm that there is

no degradation in overall performance. In Figure 5 we

compare the execution cycles (not just memory access times

but actual execution times of the applications) of the selected

benchmarks of our proposed cache systems (with optimal

configurations for various L-1 and L-2 structures as outlined
previously) with that of base cache systems. In this figure we

also show the average reduction across all the benchmarks

used in our experiments (last series). As for benchmarks ―bc‖

and ―ad‖ have less than 10% load and store (Table 1)

instructions, for both we did not achieve any reductions in

numbers of execution cycles.

Figure.4 (a). Percentage reduction of area, power and cache access time for L- 2 instruction caches

Figure 4(b). Percentage reduction of area, power and cache access time for L-2 data caches

Afrin Naz et al, International Journal of Advanced Research in Computer Science, 3 (1), Jan –Feb, 2012,114-122

© 2010, IJARCS All Rights Reserved 119

Figure. 5. Percentage reduction of execution cycles

V. ACHIEVING FURTHER IMPROVEMENT

When provided with larger caches than needed for an
application, we can either disable unused sub-arrays to save
power or use the sub-arrays for purposes other than
traditional caching, so that the overall execution performance
of an application can be further improved. In the following
two sections we evaluated both options.

A. Utilization of the Unused Areas:

Techniques such as hardware prefetching, instruction
reuse, value prediction and branch prediction have been used
effectively in desktop applications. However, these
techniques require additional space for implementing look-up
tables or buffers (viz., prefetch buffers, trace caches, branch
target buffers). And the performance gains from these
techniques are proportional to the sizes of these tables [12].
Because of the additional tables needed, these techniques are
often viewed as inappropriate for embedded systems [19].
Since we show reductions in cache sizes in our designs, these
savings may be used to implement buffers or look-up tables
to implement prefetching or branch prediction ideas.
a) Hardware and software Prefetching: Prefetching or

 exploiting the overlap of processor computations with data
accesses has proven effective in tolerating long memory
latencies [2, 9]. Successful prefetching can reduce miss rates,
but scheduling the prefetching requests is still a challenge.
Prefetching too far ahead not only wastes the embedded

system’s valuable power but may also cause cache pollution,
since the prefetched data may displace data that will be used
prior to the prefetched data. This in turn leads to additional
misses and wasted energy. On the other hand prefetching too
late will not hide the latency. In our reconfigurable cache we
can use unused cache areas as prefetch buffers to avoid cache
pollution. We use prefetching for both array data items and
instructions at L-1 cache level. The prefetching areas can be
implemented in cache arrays with minor hardware changes.

Figure 6 shows the percentage improvement in power
consumptions and cache access time when using prefetching
at L-1 level for both array and L-1 instruction caches,
compared to the base cache system. As can be seen, for all
the benchmarks there is a significant reduction in cache
access times and power consumption. The data in Figure 6
accounts for the additional power needed for prefetching. In
Figure 7 we present the percentage improvement in terms of
execution cycles of an application using prefetching (along
with our scalar, victim and array caches) when compared to
the base cache system. As we can see for benchmark ―ri‖ we
obtain as much as 85% reduction in number of execution
cycles. The average reduction in execution cycles is 47%.
Again for benchmarks ―bc‖ and ―ad‖ we did not achieve any
reductions in numbers of execution cycles as both have less
than 10% load and store instructions (Table 1).

Figure. 6. Percentage of power and access time reduction with prefetching for (a) instruction and (b) data caches

Afrin Naz et al, International Journal of Advanced Research in Computer Science, 3 (1), Jan –Feb, 2012,114-122

© 2010, IJARCS All Rights Reserved 120

Figure. 7. Percentage reduction of execution cycles after implementing prefetching

b) Hardware optimization techniques with branch
prediction tables: Modern processors utilize speculative
execution of instructions using branch prediction, instruction
reuse (or value prediction) and function reuse technique to
improve performance [13]. It has been found that many
instructions and functions, are repeatedly executed with the
same inputs, producing the same outputs [13]. These
behaviors can be exploited to reduce the number of
instructions/functions executed dynamically as follows: by
buffering the previous results of instructions and functions,
future dynamic instances of the same instructions (or
functions) can use the results from previous executions by
looking up the buffered information [13]. For branch
instructions, branch decisions are correlated and can be
predicted. Branch predictions along with branch target
buffers have been used to eliminate pipeline stalls and
improve instruction level parallelism (ILP). Until recently
these optimization techniques have been studied for
embedded applications because all such techniques require
additional hardware that lead to additional silicon area and

increased power budgets. Since we can save some cache
resources using our reconfigurable designs, the saved space
can be used to build needed look-up tables to implement
these techniques in embedded systems. In this section we
compare the percentage improvement in the number of
execution cycles for each application using branch prediction
when compared to the base cache system without branch
prediction. In this study we used combined prediction with
both bimodal predictor and 2-level adaptive predictor. The
table size for bimodal predictor is 2048 and for 2-level
predictor is 1024 with a history width of 8. The meta-table
size of combined predictor is 1024. For all of the
applications, we achieve enough space from L-2 instruction
and data caches to accommodate space for these predictors
(see Figure 4). Figure 8 shows the percentage improvement
in number of execution cycles for each benchmarks using
branch prediction when compared to the base cache system
without branch prediction. For loop intensive benchmark ―ff‖
we achieved 75 % reduction in execution cycle, since for
such applications branch prediction can be very accurate.

Figure. 8. Percentage reduction of execution cycle after implementing branch prediction

B. Shut Down Portions of Level two Instruction and Data

Caches:

The most important concern for the designers of any
embedded system is the power consumed by applications. As
our proposed design for L-1 instruction and data caches
result in reductions in the number of misses, translating into
fewer accesses in L-2 caches, we may shut down unused
portions of L-2 cache. In this section we explore the power
savings from such shut downs. This requires us to model
both static and dynamic power consumed by cache
memories. In previous sections we only accounted for

dynamic power since all cache portions are left active (not
shut down). In Figure 9 we show the percentage reduction in
total power consumption (both dynamic and static) for (a)
instruction and (b) data caches. In each figure we show the
power reductions with and without prefetching. Here for
prefetch buffer we are using area saved from L-1 instruction
and data caches (and not from L-2 cache savings). It should
be mentioned that although prefetch consumes additional
power, the benefits achieved in terms of reduced cache
misses outweighs the extra cache and hardware needed for
prefetch.

0
10
20
30
40
50
60
70
80
90

100

 bc qs dj bf sh ri ss ad cr ff avg

Afrin Naz et al, International Journal of Advanced Research in Computer Science, 3 (1), Jan –Feb, 2012,114-122

© 2010, IJARCS All Rights Reserved 121

Figure. 9. Percentage of dynamic and static power reduction without and with prefetching for (a) instruction and (b) data caches

VI. PREVIOUS WORK

In [10] the authors proposed a reconfigurable data cache
architecture for general purpose processors, focusing on one
particular option of using the saved silicon area; namely for
―instruction reuse‖. In [1] authors proposed ―selective cache
ways‖ to selectively disable portions of a data cache, trading
off performance with power. In our research we provided a
detailed analysis of silicon area savings, reduction in
execution cycles and power consumed when our
reconfigurable cache structures are used. We also perform
detailed analyses of achieving additional performance
improvement by using saved silicon area for prefetching and
branch prediction. We included reconfigurability for both L-
1 and L-2 caches. Work by Zhang et al [17-19] is closely
related to our research, as they evaluate reconfigurable
unified data caches for embedded applications. Later in [4]
the authors analyzed the possibilities of reconfigurability of
L-2 caches. Unlike their work, we do not see set-associativity
as an important reconfigurable design parameter. In our
design, both our array and scalar caches are designed as
direct mapped caches, and we use victim caches to reduce
conflict misses of scalar data. Several studies have been
reported on split data caches [14, 12, 8, 15] but none of these
studies explored reconfigurability. Moreover, previous split
cache investigations relied on dynamic detection of locality
types (spatial versus temporal). We use compile time
analysis to identify array and scalar accesses.

VII. CONCLUSION

In this paper we introduced a novel cache architecture for
embedded microprocessor platforms. When using our
proposed caches for embedded applications, our results show
excellent reductions in both memory size and memory access
times, translating into reduced power consumption and
improved overall execution times. Our cache architecture
reduces the cache area by as much as 95% for L-1 instruction
and 67% for L-1 data caches, access times by as much as
72% for L-1 instruction and 36%, for L-1 data caches and
power consumption by as much as 75% for L-1 instruction
and 67% L-1 data caches respectively when compared with
an 8k byte L-1 instruction and 8k byte L-1 data caches.
These reductions can be profound when working with small
L-1 caches often found in embedded systems. For L-2
instruction cache we achieved on average 50% improvement
in power and more than 80% reduction in access times.
Whereas for L-2 data cache the average improvement is 50%

in power and more than 60% in access times. We also show
that the saving in cache sizes resulting from our designs can
be used for other processor features including instruction and
data prefetching, branch prediction buffers. We evaluate the
potential benefits of such techniques for embedded
applications. We also explored the energy savings if the
unused cache partitions are shut down.

VIII. ACKNOWLEDGMENT

This paper was partially supported by Net-Centric
IUCRC.

VIII. REFERENCES

[1]. H. Albonesi, ―Selective Cache Ways: On-Demand Cache
Resource Allocation,‖ Journal of Instruction Level
Parallelism, 2000.

[2]. J. L. Baer, and T. F.Chen, ―An effective on –chip preloading
scheme to reduce data access penalty.‖ Proceedings of the
Supercomputing, 1991, pp.176-186.

[3]. D. Burger, and T. M. Austin, ―The SimpleScalar Tool Set,
Version 2.0‖, Tech. Rep. CS-1342, University of Wisconsin-
Madison, 1997.

[4]. A. Gordon-Ross, F. Vahid, and N. Dutt, ―Automatic tuning of
two-level caches to embedded applications‖, Design
Automation and Test in Europe Conference (DATE), 2004.

[5]. M. Guthaus, J. Ringenberg, T. Austin, T. Mudge, R. Brown,
"MiBench: A free, commercially representative embedded
benchmark suite‖, Proceedings of the IEEE 4th Annual
Workshop on Workload Characterization, 2001.

[6]. N. P. Jouppi, ―Improving direct-mapped cache performance
by the Addition of a small fully associative cache and prefetch
buffers‖, Proceedings of the 17th ISCA, 1990, pp. 364-373.

[7]. M.B. Kamble, and K. Ghose, ―Energy-efficiency of VLSI
caches: a comparative study‖, Proceedings of Tenth
International Conference on VLSI Design, 1997, pp.261-267.

[8]. J. H. Lee, S. D. Kim and C. Weems, ―Application adaptive
intelligent cache memory system‖, ACM Transactions on
Embedded Computing Systems, Vol. 1, Issue. 1, 2002, pp. 56-
78.

[9]. C. K. Luk, and T. Mowry, ―Compiler based prefetching for
recursive data structures‖, Proceedings of the 7th International
Conference on Architectural Support for Programming
Languages and Operating Systems, 1996, pp. 222-233.

[10]. P. Ranganathan, S. Adve, and N. P. Jouppi, ―Reconfigurable
Caches and their Application to Media Processing,‖ Int.
Symposium. on Computer Architecture. 2000.

Afrin Naz et al, International Journal of Advanced Research in Computer Science, 3 (1), Jan –Feb, 2012,114-122

© 2010, IJARCS All Rights Reserved 122

[11]. F. J. Sanchez, A. Gonzalez, and M. Valero, ―Software
management of selective and dual data caches,‖ IEEE TCCA
Newsletters, 1997, pp. 3-10.

[12]. Y. Sazeides, and J. E. Smith, ―The predictability of Data
values,‖ Proceedings of the 30th Annual International
Conference on Microarchitecture, 1997, pp 248-258.

[13]. A. Sodani, and G. Sohi, ―Dynamic Instruction Reuse,‖
Proceedings of 24th Annual International Symposium on
Computer Architecture, 1997, pp.194 - 205.

[14]. M. Tomasko, S. Hadjiyiannis, and W. A. Najjar,
―Experimental evaluation of array and scalar caches,‖ IEEE
TCCA Newslatters, 1997, pp. 11-16.

[15]. O. S. Unsal, I. Koren, C. M. Krishna, C. A. Moritz, ―The
Minimax Cache: An Energy-Efficient Framework for Media
Processors,‖ 8th International Symposium on High-
Performance Computer Architecture, 2002, pp. 131-140.

[16]. S. J. E. Wilton, and N. P. Jouppi, ―CACTI: an enhanced cache
access and cycle time model,‖ IEEE Journal of Solid-State
Circuits, Volume: 31 Issue: 5, 1996, pp.677 -688.

[17]. C. Zhang, F. Vahid, and W. Najjar, ―Energy benefits of a
configurable line size cache for embedded systems,‖ IEEE
International Symposium on VLSI Design, 2003.

[18]. C. Zhang, F. Vahid, and W. Najjar, ―A highly configurable
cache architecture for embedded systems,‖ Proceedings of
30th Annual International Symposium on Computer
Architecture, 2003, pp.136 -146.

[19]. C. Zhang, and F. Vahid, ―Using a victim buffer in an
application-specific memory hierarchy,‖ Design Automation
and Test in Europe Conference (DATE), 2004, pp. 220-225.

[20]. A. Naz, K. Kavi, W. Li and P. H. Sweany, ―Tiny split data
caches make big performance impact for embedded
applications,‖ Journal of Embedded Computing (Special Issue
on Embedded Single-Chip Multi-core Architectures from
System Design to Application Support), Vol.2, No.2, 2006, pp
207-219.

