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Abstract 
 

Many different areas of research are addressing reduction of 
energy in computing systems.  These include new 
semiconductor technologies, low-power design rules, clock 
gating, and voltage/frequency scaling, just to name a few.  This 
paper presents a new energy reduction approach involving the 
compiler and computer system architecture.  Eliminating 
unnecessary writes in the system has the potential to reduce 
energy by 15 percent in the cache-memory hierarchy.  
Unnecessary writes occur when modified cache lines are 
evicted and written back to the next cache level or to main 
memory even though the modified data contained in those 
lines is no longer needed by the program or does not change 
the existing memory contents.  Unnecessary writes include 
values in retreating stacks and values in heap objects that have 
been deallocated.  Unnecessary writes also occur as a result of 
unmodified data values being written back as part of a 
modified cache line.  Unnecessary writes affect a computer 
system’s performance in several ways.  The energy used by 
these writes is wasted energy. The unnecessary writes require 
execution time as memory bandwidth and they reduce the 
component lifetime of limited write-cycle technologies such as 
flash memory or phase-change memory (PCM).  This paper 
characterizes the number and type of unnecessary writes 
through the memory hierarchy and quantifies the amount of 
potential energy savings that can be obtained from eliminating 
unnecessary writes. 

Key Words:  Computer architecture, energy reduction, 
compiler optimizations, memory systems, phase change 
memory. 

 
1 Introduction 

 
One of the major focuses in current research of computing 

systems is minimizing the power consumption of 
computations.  This is a broad-based research theme as mobile 
computing devices strive for longer battery life while cloud-
computing data centers and supercomputers are concerned 
with the massive power needs and cooling requirements for 
their systems.  This is being addressed by the computing 
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industry in many ways: continuing improvements in 
semiconductor technology, low-power circuit-design rules, 
clock gating, optimizing cache configurations, and voltage-
frequency scaling are just a few examples.  This paper 
proposes the reduction of unnecessary writes throughout the 
memory hierarchy as another method to reduce energy use 
within a computer system.  The paper documents the type and 
quantity of unnecessary writes at each level of the memory 
hierarchy for various benchmarks.  This information is then 
used to propose methods to reduce or eliminate the 
unnecessary writes at each of the levels. 

The results from this research for a typical cache 
configuration show 59 percent of the bytes written to the L1 
cache, 69 percent of the bytes written to the L2 cache, 66 
percent of the bytes written to the L3 cache, and 44 percent of 
the bytes written to main memory fall into the unnecessary-
writes categories.  This research also shows that cache size 
does have a moderate effect on the unnecessary write 
percentages, while other cache configuration aspects have 
negligible effects.  Eliminating all of these unnecessary writes 
would save 15.5 percent of the energy used by the cache-
memory subsystem.  Even if only 1/2 of the unnecessary writes 
were removed, nearly 8 percent of the cache-memory power 
use would be saved.  This paper shows that unnecessary writes 
come from a variety of sources, and reducing these 
unnecessary writes requires coordinated compiler and 
architectural enhancements for maximum benefits. 

The rest of the paper is organized as follows. Section 2 
classifies writes (or data modifications) for the purpose of 
identifying unnecessary writes.  Section 3 describes the tools 
used and modifications to those tools required to perform the 
write classification and to collect the data for determining the 
unnecessary writes.  Section 4 describes the experimental setup 
of benchmarks and the cache configurations used in the data-
collection process.  Section 5 discusses the results and analysis 
of the experiment.  Section 6 proposes some implementations 
for reducing the unnecessary writes.  Section 7 describes the 
research to be performed to test and evaluate the proposed 
unnecessary-write reductions.  Section 8 contrasts the work of 
this paper with other research projects with similar goals.  
Section 9 provides the conclusions derived from this research. 

 
2 Write Classification 

 
The basic premise of an unnecessary write is that the 
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elimination of that write-operation would not cause incorrect 
program behavior.  Thus, the functional behavior of a program 
with the unnecessary writes eliminated would be 
indistinguishable from the functional behavior of the program 
with the unnecessary writes left intact.  Write operations 
within the memory hierarchy were analyzed to determine a 
classification system.  A total of six classes of write operations 
were established based on the characteristics of the write with 
respect to the active software program and the computer 
system.  The first three classes apply to both processor writes 
and to cache-line write-back writes.  The last three classes 
apply only to cache-line write-backs. 

 
2.1 Live Write   

 
A live write is when data is written to an address, changes 

the current value at that address, and that address is later read 
by the application program to retrieve the changed value.  A 
live write is the common conception of all write accesses.  A 
live write should never be eliminated, as it would result in 
incorrect program execution as the subsequent read would 
retrieve the old, incorrect data.  A live write is the only write 
class that is not an unnecessary write. 

 
2.2 Useless Write  

 
A useless write is a write transaction that modifies the data 

at an address, but the application program never reads the 
changed data.  This may be the result of a subsequent write 
changing the data before it is read or by the application 
program terminating without reading the new data.  As the 
information from a useless write is never used, the write can be 
eliminated without affecting correct program execution making 
a useless write an unnecessary write. 

 
2.3 Dusty Write   

 
A dusty write is a write operation where the current data at 

the write address already matches the data being written.  One 
example of this is a linked-list being followed back to its 
starting point.  When this cache line is written back to 
memory, the write data matches the original data.  Another 
example occurs in sorting routines where some items are 
already partially sorted and get written back to their original 
locations.  Another source of dusty write bytes are pointers and 
counters where the upper data bytes change infrequently 
relative to the lower data bytes.  Dusty writes are easy to detect 
during the write cycle by comparing the data being written to 
the existing data at that address.  Since a dusty write does not 
change data at the written address it is an unnecessary write. 

 
2.4 Dead Write  

 
A dead write is a cache-line write operation where the 

address of the cache line is no longer active within the 
application program.  One source of dead writes is when the 
program has freed a heap block of memory and there are dirty 
cache lines for that freed block.  Those cache lines eventually 

get evicted from the cache and written back to the next cache 
level or memory.  Another source of dead writes is a retreating 
stack.  Modified data that is left on the stack when a function 
returns will not be accessed again by the program.  As the data 
written during a dead write is no longer valid for the 
application program, the write is unnecessary. 

 
2.5 Untouched Write   

 
An untouched write occurs when only a part of a cache line 

is accessed and modified. This happens because cache lines are 
larger than data objects.  However, the cache keeps dirty bits 
on a cache line basis and cannot distinguish untouched 
portions of the line from modified portions.  Thus when the 
cache line is written back, both touched and untouched 
portions will be written back.  The untouched bytes are 
unnecessary writes as they are the same value that was 
originally read from memory. 

 
2.6 Mixed Write   

 
A mixed write occurs when a cache line or cache sub-block 

contains more than one write type.  A mixed write that contains 
at least one live write byte cannot be considered an 
unnecessary write at cache-line granularity as the write must 
be performed for program correctness.  However, cache lines 
that are a mixture of only dead, dusty, useless and untouched 
writes are categorized as unnecessary writes for the cache line. 

 
3 Tools Used 

 
The project chose to use Valgrind, Gleipnir, DineroIV and 

Cacti as the tools for this research.  These tools are all public 
domain tools and Valgrind, DineroIV, and Cacti are widely 
used in computer architecture research. 

 
Valgrind.  Valgrind [10] was used to perform instrumented 

simulation of the applications.  Valgrind is a simulation 
framework allowing a variety of tools to monitor and interact 
with the program being simulated.  There were no changes 
made to the core Valgrind operation for our research. 

Gleipnir.  Gleipnir [7] is a data-structure analysis tool 
integrated into the Valgrind framework.  Gleipnir was used to 
determine global, heap, or stack scope of the memory accesses 
and to generate the trace file of the memory accesses.  For the 
purpose of this research, the Gleipnir trace-output functions 
were modified to include the data values at each of the 
addresses in the trace as that information is required to detect 
dusty writes.  Gleipnir was also modified to output a trace 
record for each change to the application stack pointer as that 
information is required to detect dead writes from a retreating 
stack.  A final modification to Gleipnir added address and size 
information for all forms of malloc() and added address 
information for all free() function calls to the output trace file.  
This information was needed to detect dead writes to 
deallocated heap objects.  An example of Gleipnir output is 
shown in Figure 1.  Each line begins with a “type code” letter 
indicating the type of memory transaction or system operation.  
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Type Pid Address Size Data Scope 
A 8407 054f87b0 242   
F 8407 054f87e0    
I 8407 004c2b4a9 4 4883c440  
L 8407 0007143c0 4 000001c3 G 
M 8407 7ff000158 8 0049ae7a00000000 S 
P 8407 7ff000110    
S 8407 0054ea24c 4 000002bd H 
# This entire line is a comment 

 
Figure 1:  Example of Gleipnir trace output 

 
The type codes are defined as: 
 
• A Memory allocation operation 
• F Memory free operation 
• I Instruction fetch 
• L Load data from memory 
• M Modify memory location 
• P Stack pointer change 
• S Store data to memory 
• # Comment line 
 

The next field is the decimal process identification number for 
multiple core trace files and is required for all transaction types 
except comments.  The next field is the hexadecimal address of 
the memory transaction or operation and is required for all 
transaction types except comments.  The next field is the 
decimal number of bytes for the memory transaction or 
operation.  This field is unused for ‘F’ and ‘P’ trace lines.  The 
next field is the hexadecimal data for ‘I’, ‘L’, ‘M’, and ‘S’ 
trace lines.  The final field is the scope of the memory where 
‘G’ represents global scope, ‘H’ represents heap memory 
access, and ‘S’ indicates a stack access.  This is required on 
‘L’, ‘M’, and ‘S’ trace lines. 

DineroIV.  DineroIV [5] was used to simulate the cache 
activity from the Gleipnir trace files.  The released form of 
DineroIV is data agnostic and performs all of its cache 
simulation using the trace addresses.  For the purpose of this 
research, DineroIV was modified to track data values to detect 
dusty writes.  Dirty, valid, and last-access-type status bits were 
added for each cache-line byte to classify live, useless, and 
untouched accesses of each byte.  Modifications were made to 
the logic to classify and count the different types of writes as 
they occurred throughout the memory hierarchy.  Output 
functions were added to produce cache simulation statistics 
files with the counts of each type of memory access by cache 
level and scope.  These files included a header specifying the 
benchmark being run and the cache configuration name.  Then 
a separate section for each cache begins with the cache name 
and its parameters followed by a list of memory access counts 
by memory area, access type, bytes transferred, sub-blocks 
transferred, and cache lines transferred.  Figure 2 shows the 
level 2 cache statistics for the gcc_166 benchmark.  This 
shows the level 2 caches is unified, 512 Kbytes total size, a 
cache line of 64 bytes, a sub-block of 64 bytes, 8-way 
associativity, and 1024 sets.  The statistics files are input to a 

data reduction program that merges the different benchmark 
data results to compute the energy consumption and compare 
the results by benchmark or cache configuration. 

 
gcc_166,Large-3L 
l2-ucache,512,64,64,8,1024 
Global,reads,5483712,85683,85683, 
Global,untch,322516,0,0, 
Global,lives,326075,6,6, 
Global,usels,0,0,0, 
Global,dusts,101297,2572,2572, 
Global,deads,0,0,0, 
Global,mixed,0,9139,9139, 
Heap,reads,34290560,535790,535790, 
Heap,untch,18006417,0,0, 
Heap,lives,24557859,4984,4984, 
Heap,usels,0,0,0, 
Heap,dusts,5940405,18396,18396, 
Heap,deads,1715351,28630,28630, 
Heap,mixed,0,732678,732678, 
Stack,reads,1038272,16223,16223, 
Stack,untch,234988,0,0, 
Stack,lives,111923,17,17, 
Stack,usels,0,0,0, 
Stack,dusts,211201,124,124, 
Stack,deads,426976,9180,9180, 
Stack,mixed,0,6071,6071, 
Instr,reads,77214272,1206473,1206473, 
 

Figure 2:  Example output from a DineroIV cache simulation 
 
Cacti.  Cacti [13] is a cache energy and access time 

estimation tool.  Cacti version 6.0 was used to provide energy 
estimates for each level of the various cache configurations 
analyzed in the study.  No modifications were made to the 
Cacti tool. 

 
4 Experimental Setup 

 
4.1 Benchmarks Analyzed   

 
Five benchmarks totaling seven variations from the 

CPU2006 SPECmark series [12] were processed through 
Valgrind and Gleipnir.  The SPEC benchmarks selected for 
this study are representative of industry workloads and are 
sufficiently large to exercise the cache.  Many of the smaller 
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benchmarks, such as those in the MiBench [6] benchmark 
suite, were found to be components or kernels of applications 
rather than complete applications and would sometimes be 
wholly contained within the caches.  In some cases the last-
level cache was not even utilized in the benchmark’s 
execution.  The benchmarks selected for use in this study were 
required to have a minimum of 1 second and a maximum of 10 
minutes of real-time execution.  The minimum requirement 
assured the benchmark truly exercised the memory subsystem, 
while the maximum requirement is needed to create an upper 
bound on simulation time and trace-file size.  Simulation 
execution times were as low as 37 minutes and as high as 52 
hours for the selected benchmarks.  The SPEC benchmarks 
used were bzip2, gcc_166, gcc_200,  gcc_c-typeck, gobmk, 
hmmer, and mcf.  The three variations of gcc were kept as they 
each had significantly different memory access profiles from 
each other. 

 
4.2 Cache Configurations   

 
There were fourteen cache configurations used to analyze 

unnecessary writes in this project.  Small, nominal, and large 
2-level caches without sub blocks; small, nominal, and large 3-
level caches without sub blocks; nominal 3-level caches with 
2, 4, and 8 sub blocks per cache line; nominal 3-level caches 
with 16, 32, 64, and 128 bytes per cache line; and nominal 3-
level caches with an increasing number of bytes per cache line 
per level of 16/32/64, nominal-3L-mix1, and 32/64/128, 
nominal-3L-mix2.  This variety of cache configurations is used 
to determine if the amount of unnecessary writes is sensitive to 
any particular cache configuration parameter or specific 
parameter combinations.  Every cache configuration uses a 
split level-1 (instruction and data) cache and a unified cache at 
all other levels.  The nominal 2-level cache configuration is 
representative of caches similar to the Arm Cortex A-15 [1] 
cache with the shared L2 cache equally distributed among the 
cores (L1: 32K instruction, 32K data; L2: 1024K per core).  
The nominal 3-level cache configuration is representative of 
caches similar to the Intel Ivy Bridge [4] cache configuration 
with the shared L3 cache equally distributed among the cores 
(L1: 32K instruction, 32K data; L2:  256K unified; L3: 2048K 
per core).  The small cache configurations are 1/2 the size of 
the nominal caches and represent caches either smaller than the 
nominal configuration or represent the effect of adding 
overhead functions for the operating system and its various 
processes to the benchmark task.  The large cache 
configurations are 2 times the size of the nominal caches and 
can represent next-generation caches or a benchmark process 
getting a double allocation of the shared cache. 

 
4.3 Energy Savings Estimation   

 
A goal of the first phase of this project was an approximate 

potential energy savings if all unnecessary writes were 
eliminated.  It is unlikely that all unnecessary writes can be 
removed, but this assumption establishes an upper bound on 
the savings that might be achieved.  The assumption was made 

that reads and writes at each level required the same amount of 
energy.  This is not true for PCM and flash-memory 
technologies where the write energy is significantly more than 
the read energy; however, for SRAM caches and DRAM 
memories this assumption is suitable.  The Cacti cache-energy 
estimator was used to estimate the energy per access for each 
level of each cache configuration using 32 nm technology.  
The study produces results in terms of percentage of energy 
saved, so variations in technology and clock rate have minimal 
impact on the validity of the study results. 

The energy required for memory-level accesses was 
computed by summing the energy needed to communicate 
between the CPU and the memory with the energy needed for 
the memory access.  The transfer energy was computed using 
the standard energy equation for switching an electronic 
signal:  E = 1/2 V2 C.  The value of C for data lines was chosen 
as 20 pF to represent a typical memory data signal’s total 
capacitance for the PCB trace capacitance and capacitance of 
the connected memory devices.  The value of C for address 
and control lines was set to 40 pF as there are more memory 
devices on each address and control signal.  V was set to 1.5 
Volts as the nominal voltage swing of single ended DDR3 
memory devices.  Each data line was toggled at 50 percent of 
the transfer rate based on the statistical assumption that each 
bit was 50 percent 0 and 50 percent 1.  Thus, there is a 50 
percent chance that the next bit is different from the present bit 
resulting in a 50 percent toggle rate being an appropriate value 
for the equation.  Each address/control line was assumed to 
change once per cache-line access, based on typical DRAM 
memory burst-mode operation.  The energy for the memory 
access was derived from the power required for a burst write 
(P = VDD * IDD) divided by the transition rate for the burst (E 
= P / T) multiplied by the number of transitions required to 
transfer a cache line on a 256-bit memory bus and multiplied 
by the number of memory chips needed to implement a 256-bit 
memory bus.  The Micron MT41J512M8 [9] DDR3 memory 
device data sheet provided the VDD, IDD and T values for an 
800 MHz memory subsystem.  The energy for the cache to 
memory controller data transfer within the processor device 
and the energy for the memory-controller operation itself was 
assumed to be negligible for this phase of the research.  As the 
final analysis is based on a percentage of energy that could be 
saved, moderate variations to these values should have little 
influence on the results. 

 
5 Results and Analysis 

 
All of our results are provided as percentages for each 

benchmark.  This prevents longer-running benchmarks from 
dominating shorter-running benchmarks if access counts or 
actual energy values were used.  All of the results shown in 
this paper are based on collecting data by individual bytes 
rather than application-level data objects as the present cache 
simulator does not maintain information about data-object size 
throughout the cache hierarchy.  The multi-core cache 
simulator being developed for the next phase of this research 
will provide data-element size tracking.  The memory trace 
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files generated by Valgrind and Gleipnir for this research use 
virtual addressing.  The authors believe that the difference 
between virtual and physical addressing will have minimal 
impact on this study, although physical addressing will be 
incorporated in the next phase of this research to validate this 
statement. 

Figure 3 shows the unnecessary write breakdown for each 
level of the memory hierarchy for the nominal 3-level cache 
configuration.  The x-axis labels, “LL-category%)'”, identify 
the measurement level in the memory hierarchy (LL: L1 cache, 
L2 cache, L3 cache, or memory) and the unnecessary write 
category (category:  dead, dusty, untouched, useless, or total-
wasted, where total-wasted is the total percentage of all 
unnecessary writes).  The y-axis indicates the percentage of 
bytes written at the indicated cache level that belong to the 
indicated category.  The number is computed by dividing the 
number of bytes written at that cache level in the indicated 
write category by the total number of bytes written at that 
cache level and expressing the result as a percentage.  One 
observation that can be made is there are very few useless 
writes at any level and they have minimal impact to the total 
unnecessary writes of the system.  Another observation is there 
are no dead writes and no untouched writes at the Level 1 
cache.  As stated earlier, if the processor is accessing memory, 

it cannot be classified as a dead write.  Also by definition, an 
untouched write can occur only during a cache-line write-back, 
so a processor-L1 transaction will never have an untouched 
write.  A general trend can be observed where the percentage 
of dusty writes decreases as the level moves further from the 
processor.  This is a result of the average time between writes 
at each cache level increasing as the level increases, reducing 
the chance of the same value being written multiple times.  
The untouched write category is generally the highest for each 
benchmark at the L2, L3 and memory levels, with the notable 
exception of hmmer with 99 percent dead writes.  The hmmer 
benchmark has a large amount of heap activity with a very 
large memory footprint causing many cache-line evictions of 
deallocated heap objects, producing the very high dead writes 
beyond level 1 cache.  This graph shows that no single type of 
unnecessary write completely dominates all levels or all 
benchmarks; therefore all of the unnecessary write types 
should be addressed to maximize the possible savings.  The 
nominal 3-level cache configuration, similar to the Intel Ivy 
Bridge, showed a benchmark average of 44.2 percent of all 
bytes written to memory as being unnecessary writes. 

Figure 4 shows the total unnecessary write percentages by 
benchmark for all of the analyzed cache configurations 
measured at the memory level.  The x-axis labels indicate the 

 

 
 

Figure 3: Unnecessary write breakdown by level and type for nominal 3-level cache 
 

 
 

Figure 4: Unnecessary Write Breakdown by Cache Configuration 
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cache size as small, nominal, or large; indicate if it is a two-
level cache, “-2L”, or a three-level cache, “-3L”; indicate if 
there are sub-blocks in the cache line, “-2sb, -4sb, -8sb”; the 
cache-line block size if it is not the default 64 bytes, “-16blk,  
-32blk, -128blk”; and indicate if the configuration used a 
mixture of cache-line sizes, “-mix1” (16/32/64 bytes per cache 
line) or “-mix2” (32/64/128 bytes per cache line).  The y-axis 
indicates the percentage of total-unnecessary-write-bytes-
written to total-bytes-written at the DRAM memory level.  
This value is computed for a cache configuration by taking the 
total number of unnecessary-write-bytes written to memory 
and dividing it by the total number of bytes written to memory 
for each benchmark and then averaging this percentage for the 
benchmarks.  In general, smaller cache sizes are observed to 
have a slightly higher unnecessary write percentage than larger 
cache sizes.  The 2-level caches had 52 percent, 48 percent, 
and 44 percent unnecessary writes for small, nominal, and 
large sizes, respectively.  The 3-level caches had 48 percent, 
44 percent, and 43 percent unnecessary writes for small, 
nominal, and large sizes, respectively.  The higher rate of 
evictions of the smaller caches result in cache lines with a 
higher percentage of untouched bytes.  However, in some 
cases, such as the mcf benchmark, the unnecessary write 
percentage increased slightly with increasing cache size.  The 
moderation number of dead writes in mcf, 22 percent for 
nominal 3L, decreased with faster evictions in the smaller 
caches than untouched writes increased with the larger caches.    
Some small variations are seen among the caches with 2, 4, 
and 8 sub-blocks.  However, the variations are minor with the 
2 and 4 sub-blocks decreasing the average unnecessary writes 
by 0.02 and 0.18 percent.  The cache configuration with 8 sub-
blocks actually increased the percentage of unnecessary writes 
by 2.48 percent.  The cause of the increase in unnecessary 
writes when a small decrease was expected has not yet been 
determined and will be further examined in the next phase of 
the research.  The cache configurations with smaller block 
sizes resulted in smaller unnecessary writes, although not by a 
significant amount.  The 16-byte block size yielded 41 percent 
unnecessary writes which is 3 percentage points less than the 
nominal 64-byte block size.  The 128-byte block size yielded 

46 percent or 1.4 percentage points higher than the nominal.  
This trend was expected, as the larger cache-line sizes will 
likely contain larger amounts of untouched data.  The cache 
configurations with a different block size per level yielded 
average unnecessary write percentages within 0.1 percentage 
point of the cache configuration with the matching L3 block 
size.  Some runs were made with different set associativity (2, 
4, 8 at L1 with 4, 8, and 16 at L2 and L3), and they resulted in 
less than 0.5 percentage point variations.  This data shows that 
cache size has a moderate effect on unnecessary write 
percentages, and all other cache configuration variations have 
negligible effects. 

Similar information measured at the Level-1 cache, Level-2 
cache, and Level-3 cache showed the same general trends, 
although some benchmarks have their peak value of 
unnecessary writes at different cache levels than others.  This 
is simply a reflection of the differences in memory footprint 
and access sequences of the benchmarks. 

The previous analyses have looked at each level of the 
memory hierarchy independently and displayed the results as 
percentages at that level.  The analysis of total energy savings 
must be computed for the total memory subsystem before 
being made a percentage as the energy per access at each level 
differs and the frequency of access at each level is different.  
The total energy used at each level was computed by 
multiplying the energy required per access at that level by the 
sum of the instruction accesses, plus the sum of all read 
accesses, plus the sum of all write accesses.  The potential 
energy savings at each level was computed by multiplying the 
energy required per access at that level by the total number of 
unnecessary accesses at that level.  The total energy and 
potential energy savings of each level were summed to get the 
total energy and potential energy savings of the complete 
memory subsystem.  Taking the potential energy savings of the 
subsystem and dividing it by the total energy of the subsystem 
generated the potential energy savings percentages shown in 
Figure 5.  The x-axis labels show the same cache 
configurations used in and described for Figure 4.  The y-axis 
shows the percentage of potential energy savings by 
benchmark within each cache configuration.  The potential  

 
 

 
 

Figure 5:  Potential energy savings by cache configuration and benchmark 
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energy savings range from 13.2 percent for the large 3-level 
cache to 19.6 percent for the nominal 3-level cache using 8 
sub-blocks.  The Nominal-3L cache configuration shows a 
minimum potential energy savings of 6.1 percent for the 
gcc_200 benchmark, a maximum potential energy savings of 
44 percent for the hmmer benchmark and an average potential 
energy savings of 15.5 percent.  The potential energy savings 
percentages for flash technology and PCM technology will be 
higher than those for DRAM systems because the energy 
required for writing in those technologies is significantly 
higher than the energy used for reading. 
 The potential energy savings must be summarized at the 
memory subsystem level because of interesting interactions 
between the cache levels.  The Cacti energy estimates for the 
nominal 3-level cache are 0.16 nJ, 0.03 nJ, and 0.11 nJ for the 
L1, L2, and L3 accesses respectively.  The L2 is lower energy 
than the L1 as it is slower and only slightly larger.  The L3 
energy is higher than the L2 because it is much larger.  A 
cache-line write to DRAM requires 16.11 nJ.  Since accessing 
memory requires 100 times the energy of accessing the L1 
cache, the results might be skewed to the unnecessary write 
percentages seen in Figure 4 for the memory level.  However, 
the cache handles approximately 99 percent of all accesses 
such that the actual number of memory transactions is much 
less than the number of cache transactions.  There are 100 
times more accesses to cache than memory, but each access to 
memory requires 100 times the energy as a cache access.  The 
true picture of energy use is obtained only when all of the 
memory hierarchy is included. 

 
6 Proposed Implementations 

 
This paper has identified four types of unnecessary writes 

through the memory hierarchy.  This section addresses 
methods that can reduce or eliminate the unnecessary writes.  
Untouched writes are the largest unnecessary write 
contribution at all levels past level 1.  One approach to 
reducing untouched writes is to only write the changed data in 
the cache line.  However, this actually has a negligible energy 
savings as most of the energy in an access is accessing the row 
in the memory array.  Blocking the write operation for 
unchanged data will not save any energy.  Untouched writes 
can be minimized by compiler optimizations that group 
variables that are written at similar times together.  For 
example, if there are 8 variables that are written from a short 
code fragment, the compiler can detect this and allocate 
addresses such that those variables share a single cache line 
rather than being in up to 8 separate cache lines.  Not only will 
there be fewer untouched bytes in the one cache line that was 
modified, there is only 1 dirty cache line created by that code 
fragment where it could have potentially created 8 dirty cache 
lines.  This could be as simple as changing the assigned 
address to some scalar variables or rearranging the order of 
elements within a structure in some programs.  Reducing the 
number of dirty lines and write-backs will improve the cache-
hit efficiency resulting in a slight improvement in program 
execution time. 

Dead writes are the second largest contributor to 
unnecessary writes in the L2 and subsequent levels of memory.  
Dead writes can be minimized with fairly simple architectural 
changes and run-time library updates.  Marking a cache line as 
invalid or making a cache line clean by clearing the dirty bit 
are common cache operations used when terminating a 
program.  This prevents writing stale data from the terminated 
process to memory that may have been reallocated to a 
subsequent process.  The addition of cache-line-invalidate or 
cache-line-clean operations to the run-time library functions 
that free allocated memory will eliminate dead writes when 
heap objects are deallocated.  This approach can be 
implemented with existing cache systems.  Another approach 
could be implemented within the cache with a  
cache-line-batch-invalidate operation that accepts an address 
argument and a size argument.  This operation would 
invalidate all of the cache lines associated with the given block 
of memory with a lower processor overhead than performing 
the invalidate one line at a time.  Additionally, It may be useful 
to have all run-time memory allocations aligned to cache-line 
boundaries to ensure that no two heap objects can share a 
single cache line.  These solutions need to be analyzed to 
determine the hardware cost, the energy cost, and the runtime 
performance cost to provide a cost/benefit analysis of the 
features. 

Dusty writes are the largest contributor to unnecessary writes 
at the L1 cache level.  Dusty writes can be detected in run-time 
hardware by comparing the written data to the existing data.  
By the time the dusty write is recognized, it is too late to 
prevent access to the cache line, so no energy can be saved at 
the present write cycle.  However, when the values are equal, 
the dirty bit of the destination cache line can be left unchanged 
rather than being set.  (If it is already set, it must remain set.)  
If all of the writes to that cache line are dusty writes, then the 
line will remain clean and will not have to be written back to 
the next level when evicted.  Additionally, there may be 
compiler analyses that can detect dusty write conditions and 
remove them during optimization or group them to share 
common cache lines. 

A useless write is a write whose value is not read in the 
future.  There is no feasible method for the memory subsystem 
to determine at the time of the write whether or not the data 
value is going to be read in the future.  However, Butts [3] uses 
a prediction mechanism in the processor pipeline for useless 
instruction elimination that successfully eliminates 79 percent 
of useless instructions.  There was a reduction in register 
writes of 1.7 to 11.3 percent in the benchmarks analyzed by 
Butts which is similar to the 1.6 to 13.6 percent of useless 
writes for the level 1 cache shown in Figure 3.  Figure 3 also 
shows that the useless write category has a very small 
contribution to unnecessary writes for the level 2 cache, the 
level 3 cache, and the main memory.  This indicates that 
attempting further reduction of useless writes at those memory 
levels will be both difficult and have little benefit.  However, 
since the level 1 cache handles 99 percent of memory accesses, 
minimizing the useless writes at the level 1 cache might have a 
noticeable improvement in the cache energy savings.  As 
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shown in Butts, many of the useless instructions were created 
by instruction scheduling by the compiler.  Therefore, it might 
be possible for a compiler liveness analysis to determine that 
particular writes are useless and to remove them through 
compiler optimizations and different instruction scheduling 
algorithms. 

 
7 Future Work 

 
There are several tasks to be performed in the next phase of 

this project.  In addition to the new work, the authors will add 
more benchmarks to the analysis to broaden the application 
base of this effort.  The new benchmarks will still comply with 
the real-time execution minimum and maximum limits to 
ensure they exercise the memory subsystem sufficiently, yet 
remain within reasonable simulation execution times. 

The current project collected data by bytes, sub-blocks, and 
blocks.  A fourth category will be implemented to track write 
accesses at the program variable instance.  This will eliminate 
the upper parts of pointer and index values from being marked 
as dusty writes.  This will also assist in detecting when 
compiler optimizations in structure alignment and variable 
grouping have been effective.  Tracking data by program 
instance will require further modifications to the cache 
simulator to track data-element sizes within the cache lines. 

Simulations using physical addresses, multiple cores 
executing simultaneously, shared memory, and shared caches 
will be used in the next phase to more closely model actual 
system performance of present day processors.  This requires 
development of a new multi-core cache simulator. 

The list of possible solutions will be expanded in the next 
phase.  Compiler optimizations will be implemented when 
possible or emulated by address manipulation within the trace 
file when appropriate.  Architectural features will be 
implemented and simulated.  Each of these optimizations will 
be used to create new trace files that will be analyzed to 
determine the amount of unnecessary writes that were 
eliminated by the optimization.  Each architectural feature will 
be assessed to determine its costs with respect to increasing 
silicon area, increases in energy use, and impacts on critical 
paths.  This will provide a cost-benefit rating for each of the 
methods of unnecessary write reduction. 

 
8 Related Work 

 
Bock [2] analyzed the impact of unnecessary write-backs on 

the endurance and energy use of PCM main memory.  
Although the specific tools varied, the Bock analysis 
framework was very similar to that used in this paper.  The 
main difference in this paper was attacking the more general 
problem of unnecessary writes at each level of the hierarchy 
and determining potential energy savings in DRAM memories.  
This paper also used the Cacti cache energy estimation tool to 
provide energy estimates at each level of the cache as the 
energy per access and number of accesses at each level vary 
dramatically.  This allowed us to compute the potential energy 
savings for the entire memory subsystem rather than just the 

memory level and to determine that the potential energy 
savings would be worth pursuing in the next phase of this 
research. 

Lepak [8] analyzed “silent stores” showing an 11 percent 
performance improvement achieved by detecting and 
eliminating these stores in a two-level write-through system.  
These “silent stores” correspond to our dusty write category 
that are shown in Figure 3 to be the dominant unnecessary 
write at the L1 cache, a minor contributor to the unnecessary 
writes at the L2 and L3 cache, and almost negligible at the 
main-memory level of the write-back cache used in this study.  
The Lepak paper considered microarchitecture changes in the 
pipeline and changes to Error Correction Codes (ECC) as 
methods to implement their silent store reductions while our 
focus is compiler optimizations and cache implementations. 

Butts [3] analyzed the detection and elimination of dynamic 
dead-instructions with a mechanism similar to branch 
prediction and eliminates execution of those instructions 
whose results are not used in subsequent code.  Their work 
eliminates generation of values in registers in addition to write 
cycles from store instructions.  These stores would correspond 
to the useless write category of unnecessary writes discussed in 
our paper.  We saw minimal useless writes beyond the level 1 
cache in Figure 3.  However, most of the benefits of dynamic 
dead-instruction elimination occur within the execution 
pipeline and are therefore complementary and additive with 
respect to our paper. 

Shidal [11] is also looking at ways to more efficiently utilize 
caches by reducing write-backs from cache due to objects that 
will be removed through garbage collection.  Our research is 
currently limited to languages that explicitly free memory, 
while Shidal’s work is oriented to languages with background 
garbage collection.  A final solution to unnecessary writes will 
benefit from merging the results of both activities, rather than 
selecting one of the two approaches. 

 
9 Conclusion 

 
We have characterized and quantified the unnecessary writes 

throughout the cache-memory hierarchy using industry-
standard benchmarks and shown significant amounts of 
unnecessary writes occur at each level of the hierarchy.  We 
have shown that cache size has a moderate effect on the 
amounts of unnecessary writes and that other cache 
configuration parameters have negligible effects on the amount 
of unnecessary writes.  We have shown that elimination of all 
of the unnecessary writes would save 15 percent of the power 
consumed in a typical cache-memory subsystem and have 
embarked on future work to determine how much of the power 
savings can be achieved through compiler and architectural 
enhancements.  Some of these enhancements will reduce cache 
conflicts, producing higher cache hit rates with a subsequent 
reduction in read power and reduction in memory bandwidth.  
Additionally, the reduction in unnecessary writes will extend 
the lifetime of memory technologies that have limited write-
cycle endurance.  Reduction in unnecessary writes can also be 
affected by programming practices.  For example, a 
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programmer who does not free memory when it is no longer 
needed will prevent the system from classifying those writes as 
dead writes. 
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