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Abstract. To meet the increasing demands for very large memory ca-
pacities, bandwidth and energy efficiency, researchers are exploring the
use of heterogeneous memory systems that combine faster 3D-DRAMs,
DDRx DRAM and non-volatile memories (NVMs). In this paper we eval-
uate prefetching in a flat-addressable heterogeneous memory comprising
High Bandwidth Memory (HBM) and phase change memory (PCM). We
find that large prefetch buffers (64MB) can outperform smaller buffer
sizes (2MB), however it is not feasible to place such large buffers on the
processor die. Hence, in this paper we evaluate an HBM-resident prefetch
buffer that provides larger capacity and takes advantage of HBM’s higher
memory bandwidth. We also present new prefetching policies that accom-
modate the differences in data path as compared to traditional prefetch-
ers. We show that, reserving a small fraction (1/16th) of HBM memory
to host a hardware prefetch buffer can improve IPC for a set of SPEC
CPU2006 and HPC benchmarks by an average of 34% and a maximum
of 98% over a baseline system with no-prefetching. Prefetching reduces
total PCM traffic by 10% on average, which results in more memory
traffic to the faster HBM, providing overall performance improvement.
We found that such prfetching outperforms CAMEO and Alloy cache
schemes on average by 60% and 10%, respectively.
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1 Introduction

Demand for memory performance has been on the rise, especially for data-
intensive applications such as HPC, big data analytics, cloud computing and
in-memory databases. These applications need memory systems with very large
capacities (100s of GBs to TBs), high bandwidth and energy efficiency. For ex-
ample, SAP HANA in-memory database system requires 256GB to 2TB memory
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per host [1]. Conventional DRAM cannot satisfy such capacity and performance
demands due power and scaling challenges [2]. Recent 3D-stacked DRAM (3D-
DRAM) such as HBM [12] and Hybrid Memory Cube (HMC) [20] provide much
higher bandwidth (up to 256GB/s HBM [12] and up to 320GB/s HMC [20]) and
consume ∼70% [21] less energy than conventional DRAM. There are eight inde-
pendent channels per HBM stack [12]. However, 3D-DRAM is not likely to meet
the capacity requirements of data-intensive applications [3]. Emerging NVM
technologies, on the other hand, are much denser, consume low static power and
are scalable to provide sufficient capacity [4–8]. PCM is one type of NVM that
relies on the state or phase of material to store one bit or multiple bits. Hence it
can be much denser than traditional DRAM and provides lower cost-per-bit [22].
Also, PCM consumes less idle state power [13]. PCM may exhibit higher access
latency (∼2x for reads and 4x-32x for writes) and higher read (2x) and write
energies (4x-140x) than DDRx DRAM [22, 13]. It has limited write endurance
of 106 to 109 cycles [4, 22]. Addressing PCM limitations is an active research
area [4–6, 22, 23] and it is believed to be one of the most promising NVMs that
can be used as main memory in the near future [2, 4].

As no single memory technology can provide both large capacity and high
bandwidth, it is natural to explore heterogeneous memory systems that em-
ploy disparate memory technologies together [6, 3, 9–11, 14, 15]. Heterogeneous
memory systems introduce their own challenges due to the differences in the
characteristics of constituent memory technologies (e.g., storage capacity, access
latency, bandwidth, endurance). Recent research has been investigating solu-
tions to these challenges, either employing fast 3D-DRAM memory as a cache
for slow memory [14, 15, 10, 6] or employing both fast and slow memories as part
of a single physical address space (“flat-address-memory”) [3, 9, 11, 6]. Generally,
cache-based organizations do not need software changes, but they need to man-
age large tag space[14, 15]. In cache-based organizations the 3D-DRAM capacity
is not included as main memory capacity, which may lead to higher numbers of
page faults than flat-address-memory organizations which expose the 3D-DRAM
capacity as part of main memory [11]. However, flat-address-memory systems
need to employ techniques to efficiently place/migrate frequently accessed data
into the faster memory.

Since we are interested in designing large memory systems, in this research,
we study a flat-address-memory system consisting in faster 3D-DRAM (HBM)
and slower NVM (PCM). We propose to use prefetching methods for bridging
the performance gap between 3D-DRAM and NVM. Conventional memory-to-
processor prefetching brings data from slower memories (farther from core) to an
on-chip buffer (nearer to core). Prefetching can continue to improve performance
with larger buffer capacities [16, 10]. For example, in our study of SPEC and HPC
workloads (workload details provided in Sect. 4), we find that prefetch buffer
sizes of 32MB, 64MB, and 128MB can improve instruction per cycle (IPC) by
27%, 34% and 40% respectively, whereas a 2MB buffer can improve IPC by only
19% over no-prefetching. However, placing such large buffers inside a processor
is infeasible due to area and power limitations; processor-chip resident prefetch
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buffer capacity is typically limited to 1MB to 2MB of SRAM [17]. Hence, in
this paper, we propose “HBM-resident” prefetching by setting aside a portion
of faster HBM as a large prefetch buffer and employing customized prefetch
policies. The prefetch buffer is split over eight HBM channels, allowing high
memory level parallelism (MLP). Conventional DRAM provides only a limited
number of channels, therefore we choose HBM to host our prefetch buffer. We
prefetch data from slower PCM into a buffer space in faster HBM (by storing a
copy) and service last level cache (LLC) misses from the buffer on a hit. In case
of write-backs from LLC to PCM, if a hit is found in the prefetch buffer, the
write is also buffered there. The advantages are that, it provides faster access
to data (than accessing it from PCM) while avoiding costly updates to page
tables and TLBs (that is generally required in page migration techniques) and
reducing write-backs to PCM. The location changes resulting from prefetching
is tracked using a hardware-based address remapping table. Another advantage
of prefetching is that it might be able to hide PCM access latency even for
“cold” misses, as it can predict unseen future addresses. Neither a straight-
forward demand cache nor a hotness-based page migration scheme can avoid
cold misses, as they rely on demand or past history of accesses.

We first evaluate a prefetching scheme that relies entirely on predictability,
which is generally known as distance prefetching [18]. Next we present a temporal
locality based prefetching technique that relies on access counts to data blocks.
We also introduce a simple open-page prefetching policy which can be seen as a
relaxed caching policy. The main contributions of this paper are:

1. Novel “HBM-resident” prefetching hosted in the faster memory to buffer
pages of the slower memory.

2. A buffer architecture that is designed to take advantage of memory-level
parallelism afforded by the higher number of channels in HBM.

3. Prefetching policies that are designed to take into account the data transfer
path and characteristics of emerging memory technologies.

Our studies show IPC improvements of 33% on average (max. 70%) for a set
of SPEC CPU2006 workloads and 40% on average (98% max.) for a set of HPC
workloads over a baseline system without prefetching. Stand-alone 3D-DRAM-
resident prefetching provides an average performance improvement of 60% over
a state of the art page migration policy, CAMEO [11], and 10% over Alloy
caching [14], which is one of the leading 3D-DRAM based caching techniques.

2 Motivation for a New Prefetch Architecture

In conventional prefetching, data from lower level memories (farther from core)
are fetched into higher levels (nearer to core) before it is requested by the pro-
cessor. Some basic hardware prefetching techniques are stride prefetching [24],
stream buffers [16], Markov prefetching [25], and Distance prefetching [18].

For emerging memory technologies, different hardware prefetching policies
have been explored. Ahn et al. [26] proposed to prefetch data from HMC mem-
ory layers into a small SRAM buffer residing in the logic layer of HMC using
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Fig. 1: (a) Different prefetching organizations, (b) Proposed system organization.

stream prefetching [16] at cache line (64B) granularity. However workloads with
good spatial locality can benefit if more cache lines are fetched. In a study by
Oskin et al. [10], HBM is employed as an operating system (OS) page cache for
conventional DRAM memory, and they employ stride prefetching at OS page
(4KB) granularity. Yoon et al. [27] proposed caching PCM row buffers with high
access and conflict counts into conventional DRAM to avoid repeated opening
of the same row in PCM. However, memories with high MLP distribute their
cache blocks from the same physical page to a number of channels and, as such,
tracking row buffer conflicts may no longer be beneficial since the locality is now
spread over channels and they may not conflict. In our evaluation we configure
each type of memory with cache-line-level address interleaving to make most of
the MLP. Previously we proposed to use a customized distance prefetching pol-
icy to prefetch from slower PCM to a processor-chip-resident small SRAM buffer
(2MB) [19]. Here, unlike the processor-resident prefetch buffer, we propose to
host a much larger (32x) prefetch buffer in HBM using only 1/16th of the total
HBM capacity. This approach not only eliminates the capacity constraints, but
also allows high bandwidth utilization through MLP since the prefetch buffer is
split over multiple channels of HBM.

3 HBM-Resident Prefetching

3.1 Architecting a HBM-Resident Buffer

Fig.1(a) provides a comparison of high level organizations for processor-resident
and HBM-resident prefetch buffers for a flat-address memory system comprising
the HBM and PCM used in our evaluations. While designing our prefetch archi-
tecture we addressed four design parameters: i) prefetch buffer location, ii)
prefetch granularity, iii) prefetch initiation and iv) prefetch policies.

Prefetch buffer location dictates where to host the prefetch buffer and
its associated data path for copying data to the buffer, which directly influences
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the cost/time for completing the prefetch operation. In our design, we host the
prefetch buffer in the HBM and call it HBM-resident prefetch buffer (HRPB).
We compare our design with processor-chip-resident SRAM prefetch buffer, re-
ferred to as on-chip prefetch buffer (OCPB), as proposed in [19]. HRPB necessi-
tates a different data path for bringing data to the buffer as shown in Fig.1(a).
For OCPB, data travels one-way from memory to the processor buffer but, for
HRPB, data travels first from slower memory to a temporary swap buffer in
processor (not shown in the figure) and from there to the memory buffer. This
is because there is currently no direct data path from PCM to HBM. Prefetch
granularity influences the cost for storing and accessing tags for prefetched
data. Since the HRPB is large, the tag array size can grow very large when
prefetching at finer granularity. Therefore, we use a coarser block (2KB) gran-
ularity. Prefetch initiation dictates when to issue a prefetch request; we take
an “opportunistic” approach and only prefetch (read) from the PCM when it
is not busy serving demand read requests. Finally, we have to design prefetch
policies to amortize the cost of the longer data path and the difference in buffer
storage technology. Details on the polices are described in Sect. 3.3.

3.2 System Organization

Fig. 1(b) shows the system organization of our prefetching technique. The multi-
core processor chip has a shared LLC and a set of memory controllers (MCs).
We use 8 HBM and 2 PCM channels with one MC per channel. Fig. 1(b) shows
details of one HBM MC and one PCM MC to keep the figure readable. Each
MC contains a read queue (RD Q) and write queue (WR Q), and the PCM
MC also contains a Prefetch queue (Pref. Q). We reserve a small fraction of
the HBM as HRPB (e.g., 64MB of 1GB HBM), which is not visible to the
OS and hence non-allocable. The hardware-based global prefetch controller is
located on the processor chip. The HRPB address range is only visible to the
prefetch controller. We have assumed that the OS-visible physical address range
is statically partitioned over HBM (excluding the HRPB portion) and PCM.

We prefetch (copy) at 2KB block granularity from the PCM to the HRPB.
The original block is still kept in PCM so no page remapping is required. We
store the HRPB tag array inside the global prefetch controller. The tag array
also serves as the prefetch buffer mapping table. The HRPB is a 4-way set
associative, write-back buffer with least recently used (LRU) eviction policy. In
the mapping table, with each 37 bit address tag (which is the original PCM
physical address of that 2KB block) we store 1 valid bit, 1 dirty bit and a 32 bit
vector for tracking dirty cache lines in the prefetched block. Hence, for a 64MB
HRPB, the mapping table size will be 288KB (32,768 entries, each 9B), which
is feasible to place on the processor chip. Since each entry in the mapping table
corresponds to a fixed physical address in the HRPB, on a hit in the mapping
table, the HRPB physical address can be dynamically generated. While evicting
a block from the HRPB, only the dirty cache lines are written back to the PCM.
The prefetch policy engine implements the policies.
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How to access prefetched data in HRPB: On every LLC miss, the
address is redirected to the prefetch controller. The controller first checks the
missed address to see if it is a PCM address (we assumed that the physical
address range is statically partitioned between HBM and PCM) and, if it is,
then the controller looks up the mapping table. If a match found, then the new
destination address inside the HRPB is also known, and the request is directed
to HRPB. The solid path with numbers 1, 2, and 3 in Fig. 1(b) shows this
path. Unlike traditional migration techniques, the missing data is not moved
to the OS-visible memory space of the HBM (hence avoiding costly page table
remappings), but kept in the prefetch buffer. If no match is found in the mapping
table, the LLC miss request is serviced by the PCM (in Fig. 1(b) solid path 4
and 5). The delay overhead for every miss in the mapping table is fairly small:
the time to access a 288KB on-chip SRAM array for a 64MB HRPB.

How to prefetch data from PCM to HRPB: For every LLC miss to
PCM, the policy engine will generate the next address to prefetch depending
on the prefetching policy. The prefetch controller first checks if the generated
address is already present in the HRPB. Otherwise, it generates prefetch read
requests to the PCM and reads that block into a swap buffer located inside the
prefetch controller. The swap buffer holds one block of prefetched data (2KB).
The prefetch controller then finds a destination location in the HRPB by checking
the mapping table (if needed, write-back of the evicted entry takes place first).
After successful writes to HRPB, the mapping table entry is updated with the
new block’s address tag and the valid bit is set. This flow is shown in Fig. 1(b)
by dotted paths numbered 2, 3, and 4.

3.3 Prefetching Policies

Distance prefetching is a generalization of Markov prefetching that relies on
correlating deltas (differences) between addresses [18]. Similar to [19], we choose
to use the global history buffer (GHB) structure to implement the distance
prefetcher as presented by Nesbit et al. [28]. Storage overhead for implement-
ing GHB for distance prefetching is only 8KB [28]. Distance prefetching width
degree determines how many different prefetching paths and depth degree de-
termines how far into the future we want to explore. We found width degree 1
and depth degree 4 as optimal for us.

In Hotness-based prefetching, we use the “hotness” metric (a count of the
number of accesses to a block) [3, 6] in deciding whether to prefetch a block into
HRPB. Whenever a block is accessed more than a certain number of times (e.g.,
4) we immediately generate a prefetch request for that block. Such temporal
locality based prefetching may provide higher confidence that the prefetched
data will be useful. We use a hotness count cache with only 16K (16,384) entries
to hold the hotness count of recently accessed blocks, it works in similar manner
as filter cache presented in the CHOP study [29]. Each entry of the hotness count
cache is 6B (37b address tag and the rest to keep hotness count), hence the size
of the hotness count cache is only 96KB, which can be stored on the processor
chip and accessed with small delay overhead in the prefetching path.
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In Open-page prefetching, to benefit from row buffer locality, we change
our physical memory address interleaving from cache line level to memory page
(e.g., row with size 2KB) level granularity so that each 2KB sized block falls to
the same row. To minimize opening the same row in PCM repeatedly, we employ
a simple prefetching policy that attempts to prefetch any row buffer that is open.
This can be seen as a relaxed caching policy, exploiting spatial locality.

4 Experimental Setup

We assume a 16-core system with main memory comprising 1GB HBM and
16GB PCM in a flat-address model. Each of the cores is 4-wide out-of-order
issue with 128 entry ROB and operates at 3.2GHz. Each core has private L1 I
(32KB) and D (16KB) caches, and all 16 cores share an L2 LLC (16MB). For
HBM and PCM timing parameters we primarily follow [30] and [31] respectively;
we list them in Table 1. As a baseline, we used above mentioned memory system
without any prefetching or data migration.

We use Ramulator [30] in trace-driven mode with a CPU model to estimate
IPC. To generate the traces, we first use PinPlay kit [32] to identify region of in-
terest (ROI) of one billion instructions for each of the benchmarks in Table 2. We
have used 17 memory-intensive benchmarks from the SPEC CPU2006 suite [34],
and four representative HPC benchmarks from the US Department of Energy:
XSBench [35], LULESH [36], CoMD [37] and miniFE [38]. As listed in Table 2,
we generate memory access traces for twenty multi-programmed workloads by
running 16 copies of ROI traces of one benchmark or ROI traces from different
random benchmarks in a 16-core Moola cache simulator [33].

5 Evaluation

5.1 Performance Analysis

We first present the IPC performance improvements of the three prefetching
policies, namely Distance (delta), Hotness-based (hot) and Open-page (open)
implemented with HRPB as well as delta with OCPB [19]. The OCPB can
be seen as an LLC prefetcher which uses a separate on-chip buffer area for
prefetching to avoid the risk of polluting the LLC. Details of the prefetching
configurations are provided in tables 3 and 4. For the figures 2, 3 and 4, the
positive y-axis shows IPC percentage improvement whereas the negative y-axis
shows IPC degradation with respect to a baseline system without any prefetching
or migration. We categorize the workloads 1 to 10 as listed in Table 2 as SPEC
homogeneous (SPEC HOM), 11 to 14 as HPC homogeneous (HPC HOM), and
15 to 20 as SPEC heterogeneous (SPEC HET).

Fig. 2 shows the IPC improvements for different prefetching policies over
the baseline. For our basic set of experiments we have chosen the HRPB size
as 64MB and hot policy threshold as 4 after performing capacity and threshold
sensitivity analyses (not presented here due to space limitations). The HR hot
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Table 1: Baseline configuration
Parameter HBM PCM

Channels, capacity 8, 1 GB (8 x 128 MB) 2, 16 GB (2 x 8 GB)

Memory Controller (MC) 1 per channel 1 per channel

Row buffer size 2 KB 2 KB

Queue size/MC RD 32, WR 32 entries RD 64, WR 256, and prefetch 32 entries

Latency tCAS-tRCD-tRP-tRAS Read 80ns (7.5ns tPRE+62.5ns tSENSE+10ns tBUS)
14ns-14ns-14ns-34ns Write 250ns tCWL

Bus (per channel) 128-bit, 500MHz 64-bit, 400MHz

Table 2: Evaluated workloads (WL); footprint (FP) is provided in GB
No. WL Benchmarks MPKI FP No. WL Benchmarks MPKI FP

1 mcf 16x mcf 65.04 16 8 bwav 16x bwaves 6.90 6.82

2 lbm 16x lbm 44.21 6.30 9 cactus 16x cactusADM 3.70 2.31

3 milc 16x milc 23.05 9.05 10 xbmk 16x xalancbmk 4.50 2.89

4 omntp 16x omnetpp 18.96 2.06 11 xsb 16x XSBench 22.01 14.68

5 astar 16x astar 16.80 2.63 12 lul 16x LULESH 13.51 6.80

6 gems 16x GemsFDTD 9.59 10.59 13 mini 16x miniFE 6.72 10.66

7 zmp 16x zeusmp 8.14 3.32 14 comd 16x CoMD 1.41 2.30

No. WL Benchmarks MPKI FP

15 mix1 3x mcf, sph., 2x ast., 2x lbm, gcc, 2x sop., lib., 2x milc, omn., libq. 29.36 5.64

16 mix2 3x lbm, 2x mcf, 3x deal., 3x sop., bzi., 2x cac., 2x Gem. 20.47 5.08

17 mix3 2x Gem., lib., 2x milc, deal., 2x sph., 2x les., 2x cac., 2x gcc, bzi., ast. 10.99 3.34

18 mix4 mcf, 3x lib., 3x sop., Gems., milc, les., lbm, gcc, 2x bzi., cac., deal. 18.27 3.60

19 mix5 5x mcf, 6x lbm, 5x sop. 42.51 7.61

20 mix6 4x lib., 3x omn., 3x gcc, 3x sph., 2x milc, ast. 19.64 2.11

Table 3: Buffer Configuration
Legends Details

HRPB 64MB, 4-way,
write-back, LRU eviction

OCPB 2MB, 16-way,
write-back, LRU eviction

Table 4: Policy Configuration
Legends Details

OC delta OCPB with Distance policy, width=1, depth=4

HR delta HRPB with Distance policy, width=1, depth=4

HR hot HRPB with Hotness-based policy, threshold 4

HR open HRPB with Open-page policy

scheme provides the best average result over all other policies for all three cate-
gories of workloads SPEC HOM, SPEC HET and HPC HOM with average IPC
improvements of 27%, 43% and 40% respectively. HR hot generally works well
as usually a block with frequent accesses is a good predictor of that same block
being accessed in the future. We find that HR hot performs the best for 1/2 of
the workloads. For most of these cases HR hot policy’s prefetch accuracy and
repeated hit to the same block is much higher than the other policies.

The prediction-based delta policy works well when the workloads have pre-
dictable sequences which happens when there are repeating sequence of address
strides. OC delta [19] follows a similar trend as HR delta but since OCPB is
much smaller in size (only 1/32th of HRPB), we observe on average smaller
improvement for OC delta. For 1/3rd of the workloads, OC delta provides per-
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Fig. 3: IPC improvement (%) of HR hot prefetching, stand-alone CAMEO, and
stand-alone Alloy cache over baseline system

formance close to or better than HR delta. We found that these workloads have
diminishing reuse of data with time, hence storing many prefetched blocks for
prolonged periods of time does not help improve the performance.

In case of simpler HR open policy, we have changed the memory address
interleaving from cache-line-level to block-level to achieve more row buffer hits.
This decreases the MLP and hence we see smaller performance improvement
for most of the cases. However, for mcf and cactus our analysis shows that the
majority of the blocks have low reuse distance and the HR open policy is the
quickest to initiate a prefetch request since it simply tries to prefetch the most
recently accessed row buffer and hence it outperforms the HR hot policy.

With HBM-resident prefetching, on average, total PCM traffic is decreased
by 10%, compared to the no-prefetching baseline. Fewer accesses to PCM leads
to better average access latencies and reduced energy consumption.

Comparison with CAMEO and Alloy: Here, we compare our best prefetch-
ing policy, HR hot, with CAMEO page migration technique [11] and Alloy
caching [14]. Chou et al. proposed CAMEO (CAche-like MEmory Organization)
for a two level memory system comprising 3D-DRAM and DDR DRAM [11].
The 3D-DRAM stores recently accessed data by employing a “cache-like” mi-
gration policy, but it is visible to the OS. On a 3D-DRAM demand miss, the
requested line (64B) is filled from DDR DRAM. To make room for the requested
line, an older line needs be written back to DDR DRAM (even if it is not dirty)
since there is no other copy of this line in memory. We use CAMEO model with
HBM and PCM, with a capacity ratio of 1:16. In Alloy cache, faster 3D-DRAM
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Fig. 4: PCM timing sensitivity for Hotness-based prefetching policy

is employed as a large LLC to slower conventional DRAM memory [14]. The 3D-
DRAM is employed as a direct-mapped cache with 64B line granularity. Here
both tag and data are kept together. In our implementation we use HBM as
Alloy cache to slower PCM memory. In CAMEO, we have total 17GB of main
memory, whereas in Alloy chaching we have 16GB of main memory. Since each
of our workload’s memory footprint is below 16 GB, we cannot see the larger
capacity benefit of CAMEO over Alloy caching.

In Fig. 3, right y-axis shows the HBM hit rate (%) and the hit rate lines
correspond to it. On average CAMEO degrades IPC by 1%, Alloy cache improves
IPC by 29% and HR hot improves by 34%. In case of CAMEO, every HBM
miss results in a write back to PCM and, as a result, HBM hit rate plays an
important role in CAMEO’s performance. Generally for workloads with HBM hit
rate under 74% we see performance degradation with CAMEO. Though writes
are not in the critical path of execution, when the write queues are almost full,
memory controllers must prioritize write queues over read queues and hence the
overall execution time can be slowed down. Here, we have used different memory
technology and capacity ratios than proposed in the original CAMEO work [11],
and thus due to the high memory pressure in 3D-DRAM and slow writes of
PCM, we observe very little performance improvement by CAMEO. In case of
Alloy cache, only dirty cache lines are written back to PCM, hence Alloy cache
with similar HBM hit rate provides better performance than CAMEO.

5.2 PCM Timing Analysis

Fig. 4 shows how sensitive our proposed HBM-resident Hotness-based prefetch-
ing is to the PCM timing (due to space limitation we do not include the results
for other two prefetching policies; in general they follow a similar trend). In
one extreme we have replaced PCM with conventional DRAM (DDR3). Also,
we evaluate a 2x faster fast PCM and a 2x slower slow PCM taking the PCM
timing mentioned in Table 1 as standard. In Fig. 4 the IPC improvements for
each timing configuration are compared to the baselines with identical timing.

When we prefetch from DDR DRAM to HBM buffers, we do not see sig-
nificant benefits because both memories have similar access latencies. However,
HBM has more channels and can provide more MLP than conventional DRAM.
Hence, in this case we are paying the prefetching cost only to get the higher
bandwidth benefit of HBM. From Fig. 4 we can see that for ∼2/3rd of the work-
loads we achieve negligible IPC improvements or degradations and for the rest
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we achieve IPC improvements from 8% to 21%. With fast PCM, the amount
of time we save on a hit in the HRPB is smaller than the case when we have
standard PCM. Hence with fast PCM, we achieve smaller performance improve-
ments. On the other hand, with the slow PCM, we have fewer opportunities to
prefetch since PCM is mostly busy responding to demand requests.

6 Conclusion and Future Work

We presented a novel HBM-resident hardware-based prefetching mechanism for
heterogeneous flat-address-memory comprising HBM and PCM. We evaluated
three different prefetching policies and show that they perform better than a
system with no prefetching. In the future, we will explore composite schemes by
augmenting such prefetching policies with data migration and caching organi-
zations for heterogeneous memories. Further, HBM-resident prefetch buffer can
be employed as a staging area to make the final migration decision of the page
to the faster memory. Hence we believe this research opens new opportunities
involving prefetching in the context of heterogeneous memory.

AMD, the AMD Arrow logo, and combinations thereof are trademarks of
Advanced Micro Devices, Inc. Other product names are used for identification
purposes only and may be trademarks of their respective companies.
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