
1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

Dynamically Adapting Page Migration Policies Based on Applications Memory
Access Behaviors

SHASHANK ADAVALLY, University of North Texas

MAHZABEEN ISLAM, University of North Texas

KRISHNA KAVI, University of North Texas

There have been numerous studies on heterogeneous memory systems comprised of faster DRAM (such as 3D stacked HBM or HMC)

and slower non-volatile memories (such as PCM, STT-RAM). However, most of these studies focused on static policies for managing

data placement and migration among the different memory devices. These policies are based on the average behavior across a range

of applications. Results show that these techniques do not always result in higher performance when compared to systems that do

not migrate data across the devices: some applications show performance gains, but other applications show performance losses. It

is possible to utilize off-line analyses to identify which applications benefit from page migration (migration friendly) and use page

migration only with those applications. However, we observed that several applications exhibit both migration friendly and migration

unfriendly behaviors during different phases of execution supporting a need for adaptive page migration techniques. We introduce

and evaluate techniques that dynamically adapt to the behavior of applications and either reduce or increase migrations, or even halt

migrations. Our adaptive techniques show performance gains for both migration friendly (on average of 81% over no migrations) and

unfriendly workloads (by an average of 3%): it should be remembered that previous migration techniques resulted in performance

losses for unfriendly workloads.

CCS Concepts: • Computer systems organization → Heterogeneous (hybrid) systems;

Additional Key Words and Phrases: Heterogeneous memory systems, flat address memory, dynamic page migration, reverse migration

ACM Reference Format:
Shashank Adavally, Mahzabeen Islam, and Krishna Kavi. 2020. Dynamically Adapting Page Migration Policies Based on Applications

Memory Access Behaviors. 1, 1 (December 2020), 24 pages. https://doi.org/10.1145/1122445.1122456

1 INTRODUCTION

High performance applications as well as emerging data-centric applications need memory systems with very large

capacities (100s of GBs to TBs), high bandwidth and energy efficiency [3], [15]. For example, SAP HANA in-memory

database system requires 256GB to multiple terabytes (TBs) per host [3]; Spark in-memory analytics provides higher

performance when run with 12TB memory [15]. These applications need memory systems with very large capacities

(100s of GBs to TBs), high bandwidth and energy efficiency [3], [15]. Also, the value of these large amounts of gathered

data depends on how fast the data can be analyzed to make decisions [15].

Authors’ addresses: Shashank Adavally, ShashankAdavally@my.unt.com, University of North Texas; Mahzabeen Islam, University of North Texas,

MahzabeenIslam@my.unt.edu; Krishna Kavi, University of North Texas, Krishna.Kavi@unt.edu.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not

made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components

of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to

redistribute to lists, requires prior specific permission and/or a fee. Request permissions from permissions@acm.org.

© 2020 Association for Computing Machinery.

Manuscript submitted to ACM

Manuscript submitted to ACM 1

https://doi.org/10.1145/1122445.1122456

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

2 Shashank Adavally, Mahzabeen Islam, and Krishna Kavi

Architecture community has reacted to these needs with new memory technologies including 3D stacked DRAMs

and very dense non-volatile memories. Different organizations for combining these diverse memory technologies

into a system architecture have been investigated, including hierarchical organizations (i.e., using 3D DRAM as Last

Level Cache, LLC) or flat-address memories where 3D DRAM (for example, HBM[8], HMC [7]), DDR and non-volatile

memories (NVM) devices (for example STT-RAM [19], Phase Change Memories or PCM [27]) form a single memory

address space. In such flat-address systems, to effectively reduce average memory access times, heavily accessed pages

(hot pages) are migrated from slower memories (NVM) to faster memories (3D DRAM); cold pages are moved from faster

memories to slower memories to make room for the hot pages. Pages can be migrated (or swapped) at regular intervals

(epoch based) or individually (on-the-fly). The migration of pages between the memory systems incur execution and

energy overheads. In addition to the cost of actual data movement between memory devices, OS tables (TLBs, page

tables) must also be updated since physical addresses in such memory systems are based on the physical location of

pages and a migration changes physical addresses: we call this process of changing physical addresses and updating

system tables "address reconciliation" or AR.

There have been numerous designs that evaluated the efficiencies of different page migration techniques. One

thing is clear from these studies: no single approach leads to consistent performance improvement for all applications.

Some applications may actually see a performance degradation due to page migrations [26], [20]. It may be possible

to perform off-line analysis of memory access behaviors of applications and categorize them as migration friendly

(applications that show performance gains from page migration – for these applications, performance gains outweigh

migration overheads), and migration unfriendly (applications that do not show performance gains – overheads outweigh

performance gains from migration) and use page migrations for only the migration friendly applications. However,

off-line analyses are often coarse-grained and may not capture evolving behaviors of applications: applications may have

both migration friendly and unfriendly phases. It is necessary to design adaptive migration techniques to dynamically

increases or reduces migrations and even turns-off migrations to adapt to changing behaviors of applications. We

propose such adaptive page migrations techniques in this paper. The key contributions of our work are:

• Adaptive migration polices. Previous page migration techniques relied on fixed hotness thresholds: a page is

migrated from slow memories to faster memories when the number of times that page was accessed exceeds

the hotness threshold. In contrast, we control page migration policies based on applications memory access

behaviors. Our technique increases or reduces the hotness thresholds to reduce or increase the number of pages

migrated based on either the number of pages migrated over a window of observation or based on the observed

benefits of page migrations (were pages accessed after the migration to faster memories).

• Address reconciliation overheads can defeat the benefits of page migration. To eliminate address reconciliation,

we explore the benefit of reverse migrating pages to their original locations, particularly when the migrated

pages are no longer heavily accessed. Reverse migration makes page migration invisible to OS. However, reverse

migrations can result in excessive data movement between slow and fast memories. In this paper we evaluate

the effectiveness of reverse migration technique.

Epoch-based approaches migrate "hot" pages at the end of an epoch. In such systems, some hot pages may have

exhausted their usefulness by the time they are migrated. Our previous research [13] and the MemPod study [26] have

observed that migrating recently accessed hot pages results in better performance than migrating the "hottest" pages

with accesses accrued over a longer period (i.e., an epoch). We migrate pages as soon as they become hot (we call this

"on-the-fly" or OTF migration). Epoch-based approaches rely on OS for address reconciliation, which can be excessive.

Manuscript submitted to ACM

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

Dynamically Adapting Page Migration Policies Based on Applications Memory Access Behaviors 3

In our previous study [13] we used a special hardware Migration Controller (MigC) that includes a small remap table

(or ReMap table in our system) to track physical locations of recently migrated pages to aid in redirecting accesses to

correct page locations. Periodically, older entries in ReMap table are deleted, after MigC updates PTEs and TLBs, making

room for new page migrations (that is, after address reconciliation). We based our adaptive migration techniques and

reverse migration techniques on our previous design. We extended MigC to monitor applications’ memory access

behaviors to dynamically adapt page migrations.

The rest of the paper is organized as follows. Section 2 includes the motivation for adaptive page migration techniques.

We also include a description of our Migration Controller (MigC) as well as the migration and address reconciliation

processes. We include this information (previously reported in [13]) to make this contribution self-contained. Section

3 describes our adaptive migration techniques as well as the reverse migration technique. Section 4 contains our

experimental setup and the benchmarks used for evaluation. Section 5 includes an analysis of the results from our

experiments. We include both performance and energy results when using our adaptive migration policies. Section 6

includes a discussion of research that is closely related to ours and Section 7 summarizes the conclusions of this study

and further research that can be explored.

2 BACKGROUND ANDMOTIVATION

A number of heterogeneous memory investigations, such as [20], [35] and [26], and our previous study [13] show

that not all applications benefit from page migrations since page migrations incur performance overheads due to extra

data movement, as well as overheads for address reconciliation. It is possible to develop off-line analyses to categorize

applications as "migration friendly" (applications that show performance gains) and "migration unfriendly" (applications

that show performance losses), so that page migration is enabled only for migration friendly workloads. In our previous

work [13] we developed one such off-line classification by analyzing memory accesses to main memory pages (when

the accesses miss the cache hierarchy). We then created a histogram that shows how many pages received a certain

number of accesses. We discovered that an exponential shaped histogram indicates that very few pages receive most

accesses and those applications benefit by either placing those few pages in the faster (HBM) memory at the start of

execution, or migrated to HBM on demand. This is the case with mcf (one of the benchmarks) where just 3% of all pages

cause 97% of memory accesses
1
. Thus mcf gains significant performance from most page migration policies and it is

classified as a migration friendly application. On the other hand, applications exhibiting uniform shaped histograms

indicate that most or all pages receive about the same number of accesses, implying that too many pages may be

migrated if a fixed hotness threshold is used for migrating pages, and the migration overheads outweigh performance

gains. This behavior is exhibited by milc (another one of our benchmarks): 65% of pages contribute to 82% of all accesses

and this application does not benefit from page migration and will be classified as migration unfriendly workload.

We also tracked the usefulness of pages that were recently migrated to faster memory. Migration of pages to faster

memories result in performance gains if those pages continue to be heavily used, because these accesses will be satisfied

by faster memories. We defined Migration Benefit Quotient (MBQ) to measure the average usefulness of recently

migrated pages. Relying on the histograms and MBQ, we classified applications as very (migration) friendly, moderately

friendly and migration unfriendly. Table 1 shows a possible classification of our benchmarks based on such an analysis.

1
We omit details of the analysis and our approach for classifying applications as migration friendly or not friendly, since off-line analysis is not a key

contribution of this paper and were previously published in [13].

Manuscript submitted to ACM

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

4 Shashank Adavally, Mahzabeen Islam, and Krishna Kavi

Friendliness Benchmark
Very Friendly mcf, mix1, mix2, mix4,

mix5

Moderately Friendly lbm, omnetpp, astar

cactus, BFS, mix3, mix6

Least friendly or Unfriendly milc, gems, zeusmp

xalanc, braves, miniFE

lulesh, xsbench, CoMD

Table 1. Migration Friendliness of Applications

2.1 On-The-Fly Page Migration

In this section we will include a brief description of our previous work [13] to provide sufficient details needed

to understand the contribution of our paper. This section also provides the motivation for our adaptive migration

techniques.

Unlike approaches that rely on epochs (e.g., 10ms intervals) to track page access counts to determine which hot

pages to migrate, we migrate a page as soon it receives a certain number of accesses (hotness threshold). We call this

On-The-Fly (OTF) migration technique. OTF migration performs better than epoch-based page migration techniques

since we migrate recent hot pages [13]. This is inline with the observations made by [26] that migrating recently

accessed hot pages results in better performance than migrating the “hottest” pages with accesses accrued over a longer

period. Since in OTF migration, a page migration can take place at any time, it is important to ensure that a migration

does not halt user program execution
2
. Moreover, OS based address reconciliation on each page migration is prohibitive

for on-the-fly migration. To mitigate these issues, we devised a special hardware called MigC, placed on the processor

chip, which performs actions necessary for our OTF page migration.

Figure 1 shows a high-level system architecture of MigC. There are hot and cold buffers to temporarily store data

from pages as they are being migrated. There is a Wait queue in MigC, which holds read/write requests from Last

Level Cache (LLC) for the currently migrating pages; these requests will be serviced from the hot/cold buffers. The

memory controllers (MCs) are equipped with a separate Migration Queues (Mig.Q) to service requests from MigC for

the migrating pages. There is a small ReMap table which holds new physical page addresses of the migrated pages.

The ReMap table is consulted on every LLC miss (or on a write-back), using the old physical address to find the new

location. The size of the ReMap table is kept small (e.g., 1024 entries) so that it can be placed on-chip. Whenever the

table is full to a certain level, say 50%, address reconciliation process starts, i.e., entries from ReMap table are deleted

and the new physical addresses are made visible to OS as discussed in section 2.3 and in [13].

2.2 User Transparent Page Migration

We migrate a hot page from slower PCM into a free frame of HBM if available (one-way migration), or select an HBM

page that has not been accessed recently (LRU Cold page) and swap the hot and cold pages (two-way migration).

Consider that MigC finds that a PCM page (say page A with physical address, PA 8192) meets the hotness threshold for

migration. MigC then finds a cold page from HBM (say page B with physical address, PA 0) to swap with the hot page.

MigC inserts entries for pages A and B in the ReMap table with their current OS visible physical addresses (namely 8192

2
Epoch based approaches stop program execution and migrate several hot pages at the end of an epoch. OS manages the migration as well as updating

TLBs and page table entries with new physical addresses.

Manuscript submitted to ACM

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

Dynamically Adapting Page Migration Policies Based on Applications Memory Access Behaviors 5

Multicore Processor

Private

cache

Core 0

Private

cache

Core 1

Private

cache

Core n

LLC
LLC

controller

Migration Controller (MigC)

Cold

Buffer

Hot

Buffer

Wait Q

MigC

Logic

HBM Memory Controller

Read Q Write Q Mig. Q

PCM Memory Controller

Read Q Write Q Mig. Q

HBM (faster) PCM (slower)

Remap

Table

Fig. 1. High-level system architecture

and 0) and future PA (after migration, namely 0 and 8192). ReMap table is always looked up using OS visible (original)

PA. Mig flag is set to 1 when these pages are being migrated and a Pair flag is set to 1 to indicate a two-way migration

involving a hot and cold pair (this flag will be set to zero for one-way migration). The Pair flag will be checked during

address reconciliation (AR) to update page table entries for both (or one) pages involved in the migration.

MigC waits for any pending read requests to the pages involved in the migration that were already issued to complete.

Then, MigC starts reading hot and cold pages into their respective buffers (inside MigC). Any new requests (after the

migration is initiated) for these pages from LLC will be held in MigC resident Wait Queue and will be served from

these buffers. After completely reading the migrating page contents into the buffers, MigC starts writing contents of

buffers to their respective new page frames. When migrations are completed, the Mig flag for these pages will be reset

(to indicate completion of migration). All future requests for these pages will be directed to proper new locations based

on the ReMap table information.

2.3 Address Reconciliation

Address reconciliation can be eliminated (and make page migration transparent to OS) by using very large ReMap

tables, sufficient to track all migrated pages during the lifetime of an application. However, this is not practical for

emerging systems with very large memories (several hundred giga bytes to tera bytes). We use a very small ReMap

table and periodically evict old entries to make room for new entries for future migrations. Removing entries from the

ReMap table requires updates to physical addresses (i.e., address reconciliation) to reflect the new location of the page

consistently throughout the system, and making the new physical addresses visible to OS. We reconcile entries from

the ReMap table pair-wise if the Pair flag is 1, thus updating the physical addresses of the pages swapped during the

migration. When the Pair flag is 0 then we perform AR only for that entry. The following actions must be performed

to ensure correct address reconciliation. We use the same example hot and cold page pair, A (PA=8192) and B (PA=0),

respectively. First, all cache lines from these pages, which are currently residing in the cache hierarchies and tagged

with OS visible (old) physical address, must be invalidated (and dirty lines written back), since the current OS visible

PA will be replaced with the new PA. All future accesses to these pages will only have access to the new PA. Next,

Manuscript submitted to ACM

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

291

292

293

294

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

6 Shashank Adavally, Mahzabeen Islam, and Krishna Kavi

corresponding page table entries (PTEs) for A and B need to be updated with new PAs. The TLB entries in all cores

using the old PA must also be invalidated (known as TLB shootdown).

2.3.1 Address Reconciliation: OS vs. Hardware. Linux 3
performs the following functions when the virtual to physical

address mapping of a page is changed:

(i) flush_cache_page(),

(ii) change PTE,

(iii) flush_tlb_page() [22].

The function flush_cache_page() takes necessary parameters (a pointer to the process address space, the virtual

address and associated page frame number) and writes back any dirty cache lines of that page to memory and invalidates

the cache lines belonging to that page. This process halts the user program resulting in large overhead. We found that

on average it takes 4μs to flush cache lines of a page using CLFLUSH x86 instruction on a processor running at 2.26GHz.

To update PTE, Linux acquires page table lock and changes PTE and also executes flush_tlb_page() to invalidate all

TLBs (TLB shootdown) with old VA to PA translation. OS releases the lock upon completing these actions. The TLB

shootdown is costly because it uses IPI (interprocess interrupt) to invalidate TLB entries in every core that contains an

entry with old PA. The delay grows non-linearly with number of cores [2, 29, 36]. As reported in [20], TLB shootdown

may take up to 4, 5, 8, and 13 μs for 4, 8, 16, and 32 cores respectively on an AMD 32-core system running Linux.

In our hardware-based approach, we configure the MigC as a pseudo-processor that can send “write invalidate”

requests over the coherency network for each of the cache lines of the pages under reconciliation, requiring all caches to

write-back any dirty lines to memory and invalidate their cache lines for these pages (instead of CLFLUSH instruction).

MigC will be configured such that it can send coherence requests to other caches and receive acknowledgments back

from them; however, other caches will never send requests to, or wait for any acknowledgements from MigC. For

TLB-shootdown we rely on a shared TLB directory that contains all the private TLB entries along with process identifiers

(i.e., address space identifier) and core residency information. MigC initiates TLB shootdown by sending the associated

virtual addresses (VAs) to the shared TLB directory. The shared TLB directory then maps these VAs to necessary entries

and requests cores to invalidate these TLB entries somewhat similar to that used in [36]. We envision that actual

invalidation at each core will be carried out by a per-core hardware invalidation controller without interrupting the

core, and the upper bound of time required for completing such invalidations is assumed to be a round-trip off-chip

memory access latency [36].

2.3.2 One final issue in Address Reconciliation. To update PTE to reflect the new physical address of a migrated page

and invalidate associated TLB entries we need the virtual address (VA) of the page. However, our ReMap table contains

only the original physical address (PA) of a page and not its VA. Moreover, since the same page can be shared by multiple

processes and each process may have a different VA corresponding to the PA of the page, we need to obtain all the

possible VAs. Linux keeps descriptors for every allocated physical page frame that maintains bookkeeping information

on the number of PTEs referring to this page frame and pointers to such PTEs [5]. By using existing Linux reverse

mapping function, we can obtain the list of PAs of PTEs which hold mappings to this specific page frame number and

associated VAs with ASIDs [5]. We account for all the delays involved for these OS functions needed to implement our

address reconciliation and page migrations, using previously reported numbers and actual experimental data on real

system (see Table 3). More details on how our MigC performs address reconciliations can be found in in [13].

3
We use Linux based systems in all our experiments which makes it easier to compare our results with those reported in the literature.

Manuscript submitted to ACM

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

344

345

346

347

348

349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

Dynamically Adapting Page Migration Policies Based on Applications Memory Access Behaviors 7

-50

0

50

100

150

200

250

m
cf

lb
m

o
m

n
et

p
p

as
ta

r

ca
ct

u
sA

D
M

B
FS

m
ix

1

m
ix

2

m
ix

3

m
ix

4

m
ix

5

m
ix

6

A
vg

IP
C

 im
p

ro
ve

m
en

t
(%

)

Migration Friendly workloads

OTF_no_AR OTF_OS_AR OTF_HW_AR HMA_HS_OS_AR Mempod_no_AR

-80
-60
-40
-20

0
20

m
ilc

G
em

sF
D

TD

ze
u

sm
p

b
w

av
es

xa
la

n
cb

m
k

xs
b

en
ch

lu
le

sh

m
in

iF
E

C
o

M
D

A
vg

Migration Unfriendly workloads

OTF_no_AR OTF_OS_AR OTF_HW_AR
HMA_HS_OS_AR Mempod_no_AR

Fig. 2. IPC improvement (%) of different page migration and address reconciliation policies over no-migration baseline with static
hotness thresholds (negative y-axis shows degradation)

2.4 Analysis of Fixed Hotness Threshold Experiments

As a motivation for the adaptive migration techniques presented in this paper, we reproduced some results from [13].

We include results using On-the-Fly (OTF) migrations without any Address Reconciliation (labeled as OTF_no_AR),

assuming a sufficiently large on-chip ReMap table to track all pages migrated during a program executions. This is

unrealistic but provides a data point for comparison. We also included OTF with OS-based AR (labeled as OTF_OS_AR)

and OTF with our hardware-based AR (labeled as OTF_HW_AR). This allows us to directly compare the benefits of

using hardware instead of OS for address reconciliation. We compared our OTF schemes with an epoch-based page

migration study [20], which uses a combination of hardware and OS for address reconciliation (we refer to this

as HMA_HS_OS_AR), and with MemPod [26], with no AR as it assumes large ReMap tables (we refer to this as

MemPod_no_AR). For all the OTF schemes presented in this section, we used a fixed hotness threshold of 128. We

experimented with different thresholds (e.g., 32, 64 and 128) for 4KB pages and settled on 128 since this threshold

provided the best trade-off between the number of pages migrated and the cost of migrations. For both our OTF

migration experiments, one that performs address reconciliations using OS (OTF_OS_AR) and the other which uses our

MigC hardware (OTF_HW_AR), we use a 1024 entry ReMap table and start the address reconciliation process whenever

the table is 50% occupied. We stop migration if the ReMap table does not contain free entries, and wait for address

reconciliation to free up space. More details of the experimental parameters can be found in [13]

Figure 2 shows the results using static hotness thresholds for all our workloads
4
for different page migration and

address reconciliation techniques. A positive y-axis value shows performance improvement in terms of Instructions Per

Cycle or IPC as a percentage when compared to a baseline without any page migrations. Likewise, a negative y-axis

value indicates a performance (or IPC) loss as a percentage compared to the baseline. We separated migration friendly

and unfriendly workloads and used different scales for y-axis to make the graphs clearer.

4
Experimental setup and workloads are described in Section 4.

Manuscript submitted to ACM

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

393

394

395

396

397

398

399

400

401

402

403

404

405

406

407

408

409

410

411

412

413

414

415

416

8 Shashank Adavally, Mahzabeen Islam, and Krishna Kavi

For page migration friendly workloads, our on-the-fly migration with hardware-based AR technique (OTF_HW_AR)

results in 74% IPC improvement on average over the baseline system. It also shows 24% IPC improvement on average over

on-the-fly page migration with OS-based address reconciliation (OTF_OS_AR).

Our hardware based migration, OTF_HW_AR, shows higher improvements over other page migration techniques as

well - HMA_HS_OS_AR [20] (by 29%)and MemPod_no_AR [26] (by 13%). We included results for migration unfriendly

workloads to show that all page migration techniques degrade performance for these workloads, not just our on-the-fly

technique, and thus justifying our discussion regarding classifying applications as migration friendly and unfriendly in

Section 2. It is important to note that, for more than half of the migration friendly workloads, even after accounting for

all address reconciliation overheads (as discussed in section 2.1), hardware-based AR, (OTF_HW_AR) performs better

than MemPod_no_AR even when MemPod performs no address reconciliations. Next, we compare HMA_HS_OS_AR

that used OS based address reconciliations at each epoch with our on-the-fly approach. As shown in Figure 2, our

hardware based address reconciliation (OTF_HW_AR) performs better than HMA_HS_OS_AR for all the page migration

friendly workloads except mix6. In this case, OTF_HW_AR migrated more pages than HMA_HS_OS_AR; the migration

benefit of some of the pages is not high. In later sections we describe adaptive thresholds to monitor the migration

benefit quotient (MBQ) to control the number of pages migrated.

As expected, within our on-the-fly techniques, hardware based AR (OTF_HW_AR) performs better than OS based AR

(OTF_OS_AR). The only exception are astar and xalancbmk; the hardware based AR with smaller overheads is migrating

more pages than the OS based AR methods (since the migrations are paused during AR), however, the additional

migrations are not beneficial since these applications are classified as moderately friendly or unfriendly. Epoch-based

approaches migrate "hot" pages at the end of an epoch, and some hot pages may have exhausted their usefulness by the

time they are migrated. This is one of the reasons for our on-the-fly technique outperforming HMA_HS_OS_AR. But, in

epoch-based methods (e.g., [20]), since several pages are migrated at the end of an epoch, address reconciliation of all

migrated pages can be completed together using OS, amortizing the cost of address reconciliation. Detailed discussions

on the performance results can be found in [13].

2.5 Motivation

The performance results (shown in figure 2) for different page migration techniques that use static values for "hotness"

thresholds supports our classification of applications as migration friendly and unfriendly shown in Table 1 in Section

2. The very migration friendly applications do show significant performance gains while unfriendly applications show

performance losses. With off-line analysis such as ours (as described in Section 2 and in [13]), one could potentially

classify an application as either friendly or unfriendly and use page migrations only for migration friendly applications.

But some applications exhibit both migration friendly and unfriendly behaviors during different phases of execution.

For such applications, relying on off-line analysis limits the ability to benefit from page migrations during migration

friendly phases of an application.

Consider the behavior of one benchmark xalancbmk shown in figure ??. The left side of the figure shows the variation
of MBQ and the number of pages migrated over the course of the benchmark execution, using static "hotness" threshold

(in this case 128) in determining when a page is migrated. Both the number of pages migrated and MBQ varies during

the execution of the application. Although a large number of pages were migrated during the windows between 70

and 180, the MBQ did not show a significant increase. A properly designed adaptive migration technique can turn-on or

turn-off migration, or adjust the number and frequency of page migrations based on the evolving behavior of an application.

The right side of the figure ?? shows the result of using one of our adaptive migration techniques (as described later

Manuscript submitted to ACM

417

418

419

420

421

422

423

424

425

426

427

428

429

430

431

432

433

434

435

436

437

438

439

440

441

442

443

444

445

446

447

448

449

450

451

452

453

454

455

456

457

458

459

460

461

462

463

464

465

466

467

468

Dynamically Adapting Page Migration Policies Based on Applications Memory Access Behaviors 9

0

200

400

600

800

1000

1200

1 11 21 31 41 51 61 71 81 91 10
1

11
1

12
1

13
1

14
1

15
1

16
1

17
1

18
1

19
1

20
1

21
1

22
1

C
o

u
n

t

Window

OTF_HW_AR

MBQ Migration Count

0
200
400
600
800

1000
1200
1400

1 12 23 34 45 56 67 78 89 10
0

11
1

12
2

13
3

14
4

15
5

16
6

17
7

18
8

19
9

21
0

22
1

23
2

C
o

u
n

t

Window

OTF_HW_AR_adaptive_1

MBQ Migration Count

Fig. 3. MBQ and Migration count variation of xalancbmk workload

in section 3.2). The adaptive technique controls the number of pages migrated based on MBQ. The figure shows an

overall increase in MBQ (which corresponds in the performance gains).

A second motivation for this study is our desire to minimize overheads due to address reconciliation (updating

TLBs and page table entries when pages are relocated during migration). Some prior research (e.g., [26]) used very

large remap tables
5
to eliminate address reconciliation. However, the remap tables for emerging systems with 100’s

of GB to terabytes of memory can become impractical, or require additional techniques for the management of large

remap tables (for example, caching a small number of remap entries while keeping rest in DRAM). We use small remap

tables and rely on hardware for address reconciliation to minimize OS intervention. As an alternative to using address

reconciliation, we also explore the idea of reverse migrating previously migrated pages, particularly when they are no

longer heavily accessed, making the page migration completely transparent to OS.

3 ADAPTIVE MIGRATION

The results shown in figure 2 in section 2.4 clearly indicate that page migration techniques that use static or fixed

"hotness" threshold for deciding when a page is considered for migration can lead to performance loss for some

applications. In this section we describe our adaptive migration techniques that adjust the number of pages migrated

and even turn off migration by observing the benefits of page migration, eliminating the need for off-line analysis for

classifying applications as migration friendly and unfriendly. We track the number of pages migrated in a window

twindow and determine if too many or too few pages are migrated in the window. We also measure the Migration Benefit

Quotient (MBQ) which is the average number of accesses to pages recently migrated to faster memories. Using these

metrics we propose two adaptive techniques described in Algorithm 1 and Algorithm 2. Values shown for different

variables in these algorithms depend on the page size (4KB in our experiments) and system parameters such as memory

latencies and overheads due address reconciliation. However, they will be constant for a specific system configuration.

3.1 Adaptive Migration Based on Number of Pages Migrated

Algorithm 1 presents an overview of our first adaptive migration technique. We monitor the page migration behaviors

over a window, or a threshold_window (i.e. twindow), and dynamically increase or reduce hotness thresholds to be

5
Note that remap tables keep track of the new locations of migrated pages.

Manuscript submitted to ACM

469

470

471

472

473

474

475

476

477

478

479

480

481

482

483

484

485

486

487

488

489

490

491

492

493

494

495

496

497

498

499

500

501

502

503

504

505

506

507

508

509

510

511

512

513

514

515

516

517

518

519

520

10 Shashank Adavally, Mahzabeen Islam, and Krishna Kavi

Algorithm 1 Adaptive Migration_count technique

1: function Adaptive-migration(mgck,MBQ, threshod)
2: mgndo = 100000000;

3: tndo = 4000000

4: mn_MBQ = 50

5: m_MBQ = 70

6: mn_mg_cont = 160

7: m_mg_cont = 240

8: mn_threshod = 64

9: m_threshod = 256

10: if mgck mod tndo == 0 then
11: if mg_cont ≥m_mg_cont && threshod < m_threshod then
12: threshod *= 2;

13: else if mg_cont ≤mn_mn_cont && threshod > mn_threshod then
14: threshod /= 2;

15: if mgck modmgndo == 0 then
16: if MBQ ≤mn_MBQ then
17: psemgrton = true;
18: else if psemgrton && MBQ ≥m_MBQ then
19: psemgrton = false;
20:

used by our on-the-fly migration techniques. The change is based on how many pages have been migrated during this

window. If the count is high (too many pages have been migrated), we double the hotness threshold to reduce future

migrations; likewise, if too few pages have been migrated in a twindow, we halve the hotness threshold to increase future

migrations. In our experiments we used 4 million cycles as our twindow 6
. We also limit the hotness threshold variations

between 64 and 256. We increase threshold if more than 240 pages have been migrated in a window and reduce the

threshold if fewer than 160 pages have been migration in a window. These numbers are based on our observations

from our experiments of systems we simulated. These numbers will likely be different for other systems and can be

determined from experimental evaluations. We also pause migrations or resume migrations using a Migration Benefit

Quotient (MBQ). We define MBQ as the average number of accesses to pages that were recently migrated to HBM. If the

MBQ is less than a threshold (min_MBQ), then migrations are halted; migrations are resumed if the MBQ is greater

than another threshold (max_MBQ). The decisions regarding pausing and restarting migrations are made only after

observing MBQ values over several twindows; we refer to this as migration_window (migwindow). Our experiments

indicated that an average MBQ of less than 90 did not result in performance gains. We use this value to pause migrations.

This number (indicating the number of accesses to recently migrated pages in a twindow) depends on the overheads to

page migrations.

3.2 Adaptive Migration Based on MBQ

Migration of a page from a slow memory to a faster memory is valuable only if the page receives sufficiently large

number of accesses after migration to offset the cost of migration (and address reconciliation). Figure ?? in section

2.5 illustrated that the usefulness of migrated pages (or MBQ) plays a critical role in the overall performance gains

6
We selected this value to minimize overheads when changing the hotness thresholds. Smaller window results in more rapid adaptation, which in turn

causes some overheads in changing the configuration of MigC structures that identify pages ready for migration. Larger windows may be too slow to

adapt.

Manuscript submitted to ACM

521

522

523

524

525

526

527

528

529

530

531

532

533

534

535

536

537

538

539

540

541

542

543

544

545

546

547

548

549

550

551

552

553

554

555

556

557

558

559

560

561

562

563

564

565

566

567

568

569

570

571

572

Dynamically Adapting Page Migration Policies Based on Applications Memory Access Behaviors 11

Algorithm 2 Adaptive MBQ technique

1: function Adaptive-migration(mgck,MBQ)

2: mgndo = 100000000;

3: tndo = 4000000

4: mn_MBQ = 50

5: m_MBQ = 70

6: mn_threshod = 64

7: m_threshod = 256

8: if mgck mod tndo == 0 then
9: if MBQ ≤m_MBQ && threshod < m_threshod then
10: threshod *= 2;

11: else if MBQ ≥mn_MBQ && threshod > mn_threshod then
12: threshod /= 2;

13: if mgck modmgndo == 0 then
14: if MBQ ≤mn_MBQ then
15: psemgrton = true;
16: else if psemgrton && MBQ ≥m_MBQ then
17: psemgrton = false;
18:

achieved. Thus, another approach to dynamically adapt to an application’s behavior is to rely on MBQ as shown in

Algorithm 2. Our hardware MigC counts all the accesses to recently migrated pages in a window (twindow or 4 million

cycles) and calculates the average MBQ. We decrease (halve) the hotness threshold when the MBQ is high (greater than

130), causing more pages to migrate. We increase (double) the threshold if the MBQ is low (less than 50), to reduce

the number of pages migrated. We halt migrations if the MBQ is low for several consecutive windows (more than 25

windows). We remind the reader that these specific numbers are based on our experiments and the systems on which

we conducted our experiments and the numbers may be different for different systems.

3.3 Reverse Migration

In most page migration techniques, either epoch-based or on-the-fly migrations, the OS is eventually notified of the

migration to modify page table entries and TLBs to reflect new physical addresses of the migrated pages (since physical

addresses are based on their location). We referred to this process as address reconciliation. As described in section

2.3, and reported in [13], address reconciliation can be very expensive, particularly if performed in software by the

Operating System. The address reconciliation can be completely eliminated by using very large remap tables, as done in

[26]. However, the remap tables for emerging systems with 100’s of GB to terabytes of memory can become impractical,

or require additional techniques for the management of large remap tables. Instead of using very large remap table, we

propose to use small remap tables but "reverse migrate" pages back to their original locations, thus making room for

more recent hot pages. It should be noted that reverse migration may involve "pairwise" migration if originally a page

from faster member was moved to slower memory to make room for a hot page from slower memory.

The reverse migration process is shown in figure 4. The top left quadrant of the figure shows the identification of

hot pages and the top right quadrant shows the original migration, where a PCM page with a PA of 8192 is swapped

with an HBM page with a PA of 0. The ReMap table maintains entries for this pair of pages so that CPU requests are

correctly directed to their new locations. Previously migrated PCM page to HBM with PA 8192 has turned cold in the

bottom left quadrant, and the page is reverse migrated as shown in the bottom right quadrant, where HBM page which

Manuscript submitted to ACM

573

574

575

576

577

578

579

580

581

582

583

584

585

586

587

588

589

590

591

592

593

594

595

596

597

598

599

600

601

602

603

604

605

606

607

608

609

610

611

612

613

614

615

616

617

618

619

620

621

622

623

624

12 Shashank Adavally, Mahzabeen Islam, and Krishna Kavi

1

0 8192

Processor Die
Core

MigC

8192 0

Processor Die

8192
0

Core

MigC

8192 0

Processor Die

8192
0

Core

MigC

0 8192

Processor Die
Core

MigC

Remap
Table

LLC

LLCLLC

LLC

Remap
Table

Remap
Table

Remap
Table

HBM PCM

HBM PCM

PCM

PCM

HBM

HBM

2

3 4

Fig. 4. Reverse Migration Model

contains the page with the PA of 8192 is swapped with the PCM page with the PA of 0. We rely on MigC hardware for

both forward and reverse migrations. The ReMap table entries for these pages will be deleted upon completion of the

process (as shown in the bottom right quadrant).

Pages selected for reverse migration can be based several different criteria, such as LRU, or MBQ (pages with smaller

MBQ are reverse migrated), and the reverse migration can take place on demand or when the ReMap table fills up.

Elimination of address reconciliation simplifies the complexity of our MigC hardware, since the hardware no longer

needs to initiate cache invalidation, shootdown of TLBs and lock user processes during the reconciliation.

4 EXPERIMENTAL SETUP

In this section we will describe our simulation set up and the benchmarks we used. This set up and workloads are the

same that we used in our previous work [13] and the same for the experimental results shown previously in figure 2 in

Section 2.4.

4.1 Simulation Infrastructure

We model a 16-core system with a flat-address heterogeneous memory consisting of 1GB of HBM and 16GB of PCM

using Ramulator [16]. Ramulator is a trace driven, cycle-level memory simulator with support for a simple multi-core

CPU model with cache hierarchies. Each core is 4-wide out-of-order issue with 128 Reorder Buffer (ROB) entries and

operates at 3.2GHz. The cores have private L1-D caches (32KB, 4-way, 2-cycles) and shared L2 (16MB, 16-way, 21-cycles)

as LLC. All caches are physically tagged, write-back and LLC is inclusive. Ramulator does not model L1-I cache, and

assumes non-load/store instructions are executed in one cycle. The memory system configuration is provided in table 2;

for timing parameters of HBM we rely on [16] and for PCM timing on [24]. We modified Ramulator to support a

flat-address heterogeneous memory system. A basic address mapping function is added to Ramulator to support this

model; it allocates pages to frames of different memories in a round-robin fashion (viz., 4 pages to faster memory, then 4

Manuscript submitted to ACM

625

626

627

628

629

630

631

632

633

634

635

636

637

638

639

640

641

642

643

644

645

646

647

648

649

650

651

652

653

654

655

656

657

658

659

660

661

662

663

664

665

666

667

668

669

670

671

672

673

674

675

676

Dynamically Adapting Page Migration Policies Based on Applications Memory Access Behaviors 13

Parameter HBM PCM
Channels, 8, 1GB 2, 16GB

capacity (8 x 128 MB) (2 x 8 GB)

Memory 1 per channel 1 per channel

Controller (MC)

Row buffer 2KB 2KB

Queue size/MC RD 32, WR 32, RD 64, WR 256,

Mig. 32 entries Mig. 32 entries

Latency tCAS-tRCD Read 80ns

-tRP-tRAS: (7.5ns tPRE

14ns-14ns + 62.5ns tSENSE

-14ns-34ns + 10ns tBUS)

Write 250ns tCWL

Bus/channel 128 bit, 1 GHz 64bit, 400MHz

Table 2. Baseline configuration

Task Time Requirement
ReMap table lookup 10 cycles (after LLC)

Light-weight TLB 300 cycles (round trip

invalidation at core latency to off-chip

memory [36])

Page walk 150 cycles

OS reverse mapping 4480 cycles (measured using

Ftrace [4] on a real

machine running Linux)

Table 3. Timing parameters at 3.2GHz clock

pages to slower memory), as long as there are free frames in faster memory. When faster memory capacity is exhausted,

only slower memory frames are assigned. This allocation ensures that pages for all application span both memory devices

and thus necessitating page migration considerations in our experiments. We also made sure that the memory footprints of

our benchmarks are at least twice as large as the HBM capacity, requiring the use of both HBM and PCM. We incorporate

our MigC unit in Ramulator with all necessary details to perform functions as described in previous sections (Section

2.1). MigC also operates at 3.2GHz. We assume conventional 4KB pages. The ReMap table is implemented as a 1024

entry fully-associative table. We conservatively assumed an access latency of 10 CPU cycles for ReMap table (in some

experiments we tested with larger ReMap tables and adjusted access times appropriately). We included all timing

overheads (listed in table 3 assuming 3.2GHz clock rate) for performing different HW/OS tasks described in the previous

Section 2.2. Finally, we used CACTI [23] to model the power rating of the MigC components.

4.2 Workloads

We use sixteen multi-programmed SPEC CPU2006 [34] workloads, four multi-threaded benchmarks from the US

Department of Energy (DOE) provided ECP Proxy Applications [9] as well as the BFS from Graph500 suite [14]. We

selected SPEC benchmarks with large memory footprints, at least twice the capacity of HBM. SPEC benchmarks allow

us to compare our work with other studies. We profile benchmarks using PinPlay kit [10] to collect a representative

Manuscript submitted to ACM

677

678

679

680

681

682

683

684

685

686

687

688

689

690

691

692

693

694

695

696

697

698

699

700

701

702

703

704

705

706

707

708

709

710

711

712

713

714

715

716

717

718

719

720

721

722

723

724

725

726

727

728

14 Shashank Adavally, Mahzabeen Islam, and Krishna Kavi

mix1 mix2 mix3 mix4 mix5 mix6

astar 2x 1x 1x

bzip2 1x 1x 2x

cactus 2x 2x 1x

dealII 3x 1x 1x

gcc 1x 2x 1x 3x

gems 2x 2x 1x

lbm 2x 3x 1x 6x 1x

leslie 2x 1x

libq 2x 1x 3x 4x

mcf 3x 2x 1x 5x

milc 2x 2x 1x 2x

omntpp 1x 3x

soplex 2x 3x 3x 5x

sphinx 1x 2x 3x

Table 4. SPEC multi-programmed mix workloads

slice of 500M instructions from each of the applications. To make a multi-programmed workload, we run a 16-core

Ramulator simulation where each core runs one of the SPEC traces to completion. We either run 16 copies of the

same benchmark on 16 cores (each such workload is labeled by the benchmark name in our graphs) or run a random

mix of benchmarks on 16 cores (these workloads are labeled as mix1 to mix6 and described in Table 4). The publicly

released multi-threaded HPC proxy benchmarks by the US Department of Energy (DOE) that we used are- XSBench [1],

LULESH [12], CoMD [21] and miniFE [11]. We ran each HPC benchmark in a 16-thread setup and collected 500M

instruction traces for each of the threads using Pin tools [25]. By running traces of the 16 threads of a HPC benchmark in

Ramulator we obtain a multi-threaded workload (each such workload is labeled with the name of the benchmark). The

memory footprint of the workloads range between 2GB to 11GB, ensuring that the workloads fit in physical memory

and do not require access to secondary storage. They are large enough to cause migration but not unrealistically small.

5 RESULTS AND ANALYSES

In this section we present the experimental results for our adaptive migration and reverse migration techniques
7
.

5.1 Adaptive Hotness Thresholds

As discussed in section 2.4, techniques that use fixed hotness thresholds do not perform well for some applications. In

this section we will evaluate our adaptive page migration techniques described in section 3. As described in that section,

we monitor the number of pages migrated in a window: page migration overheads can defeat benefits of migrations

if too many pages are migrated. We also monitor the benefits of page migration (or MBQ) by tracking the average

number of memory accesses to migrated pages in a window. A low MBQ may indicates that the migrated pages are not

heavily accessed and thus the migration was not beneficial. This may be the case for applications that are migration

unfriendly. Using these measures we either change hotness thresholds (to either increase or decrease the number of

pages migrated) or completely stop migrations for a duration.

7
In Section 2.4 we reported the performance results for migration techniques that use static or fixed hotness thresholds.

Manuscript submitted to ACM

729

730

731

732

733

734

735

736

737

738

739

740

741

742

743

744

745

746

747

748

749

750

751

752

753

754

755

756

757

758

759

760

761

762

763

764

765

766

767

768

769

770

771

772

773

774

775

776

777

778

779

780

Dynamically Adapting Page Migration Policies Based on Applications Memory Access Behaviors 15

0%

50%

100%

150%

200%

250%

m
cf

lb
m

om
ne

tp
p

as
ta

r

ca
ct

us

m
ix

1

m
ix

2

m
ix

3

m
ix

4

m
ix

5

m
ix

6

BF
S

Av
g

Migration Friendly workloads

OTF_HW_AR OTF_HW_AR_adaptive_1

OTF_HW_AR_adaptive_2 OTF_HW_AR_adaptive_3

-25%

-20%

-15%

-10%

-5%

0%

5%

10%

15%

20%

m
ilc

ge
m

s

ze
us

m
p

bw
av

es

xs
be

nc
h

lu
le

sh

m
in

iF
E

Co
M

D

xa
la

nc
bm

k

Av
g

Migration Unfriendly workloads

OTF_HW_AR OTF_HW_AR_adaptive_1

OTF_HW_AR_adaptive_2 OTF_HW_AR_adaptive_3

Fig. 5. IPC improvement (%) using Adaptive migration policies over no-migration baseline (negative y-axis shows degradation)

5.2 Evaluation of Adaptive Control Based on Number of Pages Migrated

The MigC will monitor the number of pages migrated and sets new threshold values. MigC still performs address

reconciliation when the ReMap table is more than half full. We compare the IPC using dynamic thresholds with the

results obtained using static threshold of 128, OTF_HW_AR (previously shown in Figure 2). Figure 5 shows the IPC

improvements using our first adaptive technique (as described in Algorithm 1) over the baseline with no page migration.

The bars labeled OTF_HW_AR_adaptive_1 refer to the results from our on-the-fly migrations using hardware address

reconciliation and adapting hotness thresholds based on the number of pages migrated. Our adaptive technique results

in 70% performance gains on average over the baseline for migration friendly workloads (the on-the-fly migration

with static threshold shows 80% gains over the baseline) but shows on average 2% performance gains over the baseline

even for unfriendly workloads (static threshold OTF shows a performance loss of 7%). The adaptive threshold generally

reduces the number of pages migrated for migration unfriendly workloads (for example milc, gems, bwaves, lulesh,

CoMD, xalancmbk) reducing the cost of migrations. On the other hand, applications that are friendly (e.g., mcf, lbm,

BFS and some mixed workloads) may see some decrease in performance gains when compared to static threshold based

migrations. This is because, when the MigC notices that very few pages are migrated in a window, the threshold is

reduced to 64 to increase the migrations. However, these additional migrations do not contribute to performance gains.

For example, as described in Section 2.5, for mcf, only 3% of pages receive large number of accesses, and migrating other

pages with fewer accesses will not contribute to performance gains, but adds to migration and address reconciliation

costs. It may also be the case that for moderately friendly applications, the adaptive technique may aggressively increases

hotness threshold and reduce the number of pages migrated, even when the application is benefiting from the page

migrations. We will explore this later in Section 5.4.

5.3 Evaluation of Adaptive Control Based on Migration BenefitQuotient

Figure 5 includes the results for our second adaptive technique which uses MBQ to control hotness thresholds, as

described in Algorithm 2. The results labeled OTF_HW_AR_adaptive_2 refer to our on-the-fly migrations using

hardware for address reconciliation and adapting thresholds based on the average access counts to recently migrated

pages (i.e., MBQ). On average, our MBQ based adaptive migration shows a performance gain of 66% over the baseline

Manuscript submitted to ACM

781

782

783

784

785

786

787

788

789

790

791

792

793

794

795

796

797

798

799

800

801

802

803

804

805

806

807

808

809

810

811

812

813

814

815

816

817

818

819

820

821

822

823

824

825

826

827

828

829

830

831

832

16 Shashank Adavally, Mahzabeen Islam, and Krishna Kavi

1

4

16

64

256

1024

4096

m
cf

lb
m

om
ne

tp
p

as
ta

r

ca
ct

us
AD

M

m
ilc

Ge
m

sF
DT

D

ze
us

m
p

bw
av

es

xs
be

nc
h

lu
le

sh

m
in

iF
E

Co
M

D

xa
la

nc
bm

k

MBQ per window (in log2 scale)

OTF_HW_AR OTF_HW_AR_adaptive_1

OTF_HW_AR_adaptive_2 OTF_HW_AR_adaptive_3

0
100
200
300
400
500
600
700
800
900

m
cf

lb
m

om
ne

tp
p

as
ta

r

ca
ct

us
AD

M

m
ilc

Ge
m

sF
DT

D

ze
us

m
p

bw
av

es

xs
be

nc
h

lu
le

sh

m
in

iF
E

Co
M

D

xa
la

nc
bm

k

Migrations per window

OTF_HW_AR OTF_HW_AR_adaptive_1
OTF_HW_AR_adaptive_2 OTF_HW_AR_adaptive_3

Fig. 6. Traffic data (Left, MBQ per window. Right, Migration count per window)

(compared 80% gain using static threshold) for migration friendly workloads, and a 3% performance gain on average

(compared a performance loss of 7% with static threshold) for unfriendly workloads. The adaptive technique results in

either some performance gains, or at least prevent performance losses for migration unfriendly benchmarks: for example,

milc, gems, zeusmp, bwaves, CoMD. However, the adaptive MBQ technique results in smaller performance gains for

some migration friendly benchmarks when compared to static threshold technique (e.g., mcf, lbm, cactus and some

mixed workloads) for the same reasons outlined in the previous section (Section 5.2.

To understand the performance of our adaptive algorithms better we analyzed migration patterns and accesses to

migrated pages, see figure 6. We show the average number accesses to pages migrated to HBM in a window of 4 million

cycles (or MBQ) on the left and the average number of pages migrated in a window on the right. Please note that the

MBQ per window in Figure 6 is shown in log2 scale. For most of the migration friendly applications the static threshold

technique migrated very large number of pages, while the adaptive techniques aggressively reduced the number of

pages migrated and this in turn reduced overall performance gains. Note that our adaptive techniques try to reduce the

number of pages migrated to minimize migration overheads. The exception is lbm. As reported in our previous work

[13] and listed in Table 1, lbm is actually classified as only moderately friendly application. For migration unfriendly

workloads, adaptive techniques migrated fewer pages and this in turn resulted in higher average MBQ than static

thresholds. The exceptions are gems and bwaves. The number of migrations for gems is greatly reduced in adaptive

migration techniques which improved the overall MBQ. For bwaves, the static threshold resulted in slightly better MBQ

than adaptive techniques, but it migrated more than twice as many pages: the migration overheads defeat the MBQ

advantage. These results directly translate into performance gains shown in Figure 5.

5.4 Evaluation of Adaptive Migrations Based on Combined Technique

Based on these observations regarding the two adaptive techniques presented thus far, we explored a third adaptive

technique that combines these two methods. This is shown in Algorithm 3. In this method, when the number of pages

migrated exceeds the threshold, but the MBQ is high, we will not increase the hotness threshold (which in turn reduces

the number of pages migrated), since the high MBQ indicates that page migration is beneficial even when a large

number of pages are migrated.

Manuscript submitted to ACM

833

834

835

836

837

838

839

840

841

842

843

844

845

846

847

848

849

850

851

852

853

854

855

856

857

858

859

860

861

862

863

864

865

866

867

868

869

870

871

872

873

874

875

876

877

878

879

880

881

882

883

884

Dynamically Adapting Page Migration Policies Based on Applications Memory Access Behaviors 17

Algorithm 3 Combined Adaptive technique (Initialized values depend on the page size)

1: function Adaptive-migration(mgck,MBQ)

2: mgndo = 100000000;

3: tndo = 4000000

4: mn_MBQ = 50

5: m_MBQ = 70

6: pper_MBQ = 100

7: mn_threshod = 32

8: m_threshod = 256

9: if mgck mod tndo == 0 then
10: if (mg_cont ≥ m_mg_cont) && (threshod < m_threshod) && (MBQ ≤

pper_MBQ) then
11: threshod *= 2;

12: else if (mg_cont ≤ mn_mg_cont) && (threshod > mn_threshod) && (MBQ ≤
m_MBQ) then

13: threshod /= 2;

14: if mgck modmgndo == 0 then
15: if MBQ ≤mn_MBQ then
16: psemgrton = true;
17: else if psemgrton && MBQ ≥m_MBQ then
18: psemgrton = false;
19:

The results of this combined adaptive technique are also included in Figure 5which are labelled as OTF_HW_AR_adaptive_3.

The figure shows that the combined approach achieves almost the same level of performance as static threshold tech-

nique for (very) migration friendly applications. On the other hand, the combined adaptive technique outperforms static

threshold and the other adaptive migration techniques for moderately friendly and unfriendly workloads. On average,

our combined adaptive migration shows a performance gain of 81% over the baseline (compared 80% gain using static

threshold) for migration friendly workloads, and a 2% performance gain on average (compared a performance loss of

7% with static threshold) for unfriendly workloads.

Our adaptive techniques achieve these goals without having to perform off-line analyses. Our adaptive techniques

are very simple to implement. We either count the number of pages migrated in a given time window, or measure the

number of accesses to pages recently migrated to HBM. It may be possible to investigate more intelligent adaptive

techniques, but they will likely be complex to implement.

5.5 Reverse Migration of Pages

Next, we explored reverse migration of pages to eliminate address reconciliation. As the ReMap table fills up, instead

of reconciling addresses of pages and removing ReMap entries, we migrate pages back to their original locations and

remove the corresponding ReMap entries, as described in section 3.3. For our experiments, we select pages based on

MBQ: pages with least number of accesses in a window are candidates for reverse migration, after making sure that

migrated pages remain in HBM for a minimum duration (in our case one million cycles) to avoid reverse migrating

pages too early. If no pages are suitable for reverse migration, page migration is temporarily delayed. Figure 7 shows

the results from our reverse migration experiments.

Manuscript submitted to ACM

885

886

887

888

889

890

891

892

893

894

895

896

897

898

899

900

901

902

903

904

905

906

907

908

909

910

911

912

913

914

915

916

917

918

919

920

921

922

923

924

925

926

927

928

929

930

931

932

933

934

935

936

18 Shashank Adavally, Mahzabeen Islam, and Krishna Kavi

-30%

-10%

10%

30%

50%

70%

90%

110%

130%

150%

m
cf

lb
m

om
ne

tp
p

as
ta

r

ca
ct

us

m
ix

1

m
ix

2

m
ix

3

m
ix

4

m
ix

5

m
ix

6

Av
g

Reverse Migration impact on Migration Friendly

OTF_HW_AR OTF_RM_adaptive_1K OTF_RM_adaptive_16K OTF_RM_adaptive_64K

210

199

217

-25%

-20%

-15%

-10%

-5%

0%

5%

10%

15%

20%

m
ilc

ge
m

s

ze
us

m
p

bw
av

es

xs
be

nc
h

lu
le

sh

m
in

iF
E

Co
M

D

xa
la

nc
bm

k

Av
g

Reverse Migration impact on Migration
Unfriendly

OTF_HW_AR OTF_RM_adaptive_1K
OTF_RM_adaptive_16K OTF_RM_adaptive_64K

Fig. 7. IPC improvement (%) of Reverse migration over no-migration baseline with different remap table sizes (negative y-axis shows
degradation)

We still use adaptive thresholds relying on MBQ as described in Algorithm 2. For comparison purposes, Figure 7

includes data for migration based on static threshold of 128 (previously shown in Figure 2: these results are labeled as

OTF_HW_AR (with 1024 ReMap entries). For reverse migration experiments, we vary the ReMap table sizes between 1K

and 64K entries. The results are labeled with ReMap table sizes. For example, OTF_RM_adaptive_1K refers to on-the-fly

migrations with reverse migrations, using adaptive MBQ based thresholds and a ReMap table with 1024 entries. For

migration friendly workloads, on average the reverse migration technique shows performance gains of 2%, 41%, 57%

with 1K, 16K, 64K ReMap tables respectively over the baseline (compared to 74% gains using static threshold). A smaller

ReMap table causes frequent migrations and reverse migrations leading to excessive data movement. Larger ReMap

table results in performance gains for most applications when compared to the baseline with no page migrations. For

some migration friendly benchmarks (for example lbm), reverse migration may cause heavily accessed pages to be

migrated and reverse migrated several times. Address reconciliation eliminates such repeated migrations since heavily

accessed pages are likely to be permanently moved to HBM (and physical addresses reconciled). For most workloads,

larger ReMap tables provide sufficient space for heavily accessed pages to remain in ReMap table for longer periods

of time, requiring fewer reverse migrations. For example, consider mcf, based on our characterization [13], only 3

percent of the pages account for 90 percent of the memory accesses. So, having such large ReMap table sizes helped in

reducing reverse migrations. Except for some very friendly workloads like mix1, mix2, mix5 and lbm, reverse migration

(OTF_RM_adaptive_64K) performs on par or even better than OTF_HW_AR. Even for migration unfriendly workloads,

reverse migration shows performance gains of about 3% for all ReMap table sizes (compared to 7% performance loss

using static threshold). Our adaptive techniques either limit or stop page migrations for these migration unfriendly

applications. Thus the size of the ReMap table has very little impact on the performance of migration unfriendly

workloads. We feel that reverse migrations can be a viable option to HMA systems, particularly when the address

reconciliation is costly. Larger ReMap tables are justified since reverse mapping eliminates the complexity and overheads

of address reconciliations. A 64K ReMap table would require about 1.3Mbytes storage. This table can be placed in HBM

while caching a small portion inside the MigC. This is similar to the studies reported in [6, 26, 32]; in those studies the

ReMap tables were much larger than what we are proposing.

Manuscript submitted to ACM

937

938

939

940

941

942

943

944

945

946

947

948

949

950

951

952

953

954

955

956

957

958

959

960

961

962

963

964

965

966

967

968

969

970

971

972

973

974

975

976

977

978

979

980

981

982

983

984

985

986

987

988

Dynamically Adapting Page Migration Policies Based on Applications Memory Access Behaviors 19

5.6 Subpage Migration

Although not actually implemented in this study, reverse migration may be useful in systems with very large pages. As

the physical memory sizes increase, traditional 4K byte pages also increase the sizes of page tables and TLBs. Page table

and TLB sizes can be reduced by using larger pages, say 64KB, 1MB, 2MB or even 1GB pages.

However, it should be noted that only small portions of a large (or huge) page is likely to be "hot" while other portions

are not heavily accessed. It will be wasteful to migrate the entire page in such cases. So, instead of migrating large

pages, one may consider migrating only hot subpages of large pages. Such subpage migrations require tracking the

physical location of subpages. ReMap tables can be extended for this purposes: each entry in the ReMap table can

contain a bit map to indicate if a subpage is migrated or not. But address reconciliation becomes very cumbersome; we

need to migrate rest of the subpages before updating PTE and TLB entries. Instead, the use of reverse migration can

provide an alternative to address reconciliation, making subpage migration a potentially viable method. Migration (and

reverse migration) can take place at smaller subpage granularity (1KB, 2KB) as these result in better performance for

some benchmarks. We will explore reverse migration of subpages for systems using huge pages in future.

5.7 Energy Consumption

Figure 8 shows the dynamic energy savings that are achieved using Adaptive and Reverse migration techniques

when compared with the baseline (with no page migrations). For baseline system, we measure energy for all demand

requests to faster and slower memory. Energy consumption for our techniques account for energy for demand requests,

energy consumed for migration of pages (which requires additional accesses to memory) and energy consumed by

the migration controller hardware to manage migrations and address reconciliation. It should be noted that the

HBM energy consumption is much lower than PCM as shown in table 5. As the number of accesses to the HBM

increases with the decrease in the accesses to PCM when pages are migrated (even accounting for the migration cost

itself), noticeable energy savings can be observed. All our on-the-fly migration techniques show energy savings for

migration friendly workloads: the hardware address reconciliation technique (OTF_HW_AR) consumes on average

27 percent less energy, while the adaptive techniques (OTF_HW_AR_adaptive_1, OTF_HW_AR_adaptive_2 and

OTF_HW_AR_adaptive_3) consume 25, 22 and 29 percent less energy than baseline respectively. As shown in a previous

Section 5.1, the execution performance of adaptive techniques (OTF_HW_AR_adaptive_1, OTF_HW_AR_adaptive_2) is

slightly lower that the OTF_HW_AR, which uses static threshold. This in turn also results in slightly higher energy

consumption for adaptive techniques, while the OTF_HW_AR_adaptive_3 performs slightly better than OTF_HW_AR,

and consumes 2% less energy than OTF_HW_AR. The reverse migration techniques with 1K, 16K and 64K ReMap

table sizes (OTF_RM_adaptive_1K, OTF_RM_adaptive_16K, OTF_RM_adaptive_64K) show 0, 21 and 29 percent energy

savings respectively over the baseline with no page migrations. As stated, OTF_RM_adaptive_1K causes frequent

migrations and reverse migrations even for heavily accessed pages which otherwise would have been reconciled. Thus

the benefits of the migrations are negated by the reverse migrations. For migration unfriendly workloads, our adaptive

techniques saves power up to 15% compared to OTF_HW_AR technique on average. In the case of reverse migration

technique with 16K and 64K ReMap tables (OTF_RM_adaptive_16K and OTF_RM_adaptive_64K), ReMap table sizes

are large enough to hold hot pages for longer periods, minimizing the need for reverse migration. This in turn results

in improved energy savings. In some cases, the benefit of large ReMap table size is sufficient to show energy savings

that equal the improvements achieved with the best adaptive technique (OTF_HW_AR_adaptive_3). In our energy

computations, we have accounted for the additional power needed for large ReMap table sizes.

Manuscript submitted to ACM

989

990

991

992

993

994

995

996

997

998

999

1000

1001

1002

1003

1004

1005

1006

1007

1008

1009

1010

1011

1012

1013

1014

1015

1016

1017

1018

1019

1020

1021

1022

1023

1024

1025

1026

1027

1028

1029

1030

1031

1032

1033

1034

1035

1036

1037

1038

1039

1040

20 Shashank Adavally, Mahzabeen Islam, and Krishna Kavi

Memory Access Energy
HBM 3.92 pj/bit

PCM Read 42 pj/bit

Write 140 pj/bit

Table 5. Memory Energy parameters

-40%

-30%

-20%

-10%

0%

10%

20%

30%

40%

50%

60%

70%

m
cf

lb
m

om
ne

tp
p

as
ta

r

ca
ct

us
AD

M

m
ix

1

m
ix

2

m
ix

3

m
ix

4

m
ix

5

m
ix

6

BF
S

Av
g

Energy savings on Migration Friendly

OTF_HW_AR OTF_RM_adaptive_1K OTF_RM_adaptive_16K

OTF_RM_adaptive_64K OTF_HW_AR_adaptive_3

-45%

-40%

-35%

-30%

-25%

-20%

-15%

-10%

-5%

0%

5%

m
ilc

G
em

sF
D

TD

ze
us

m
p

bw
av

es

xs
be

nc
h

lu
le

sh

m
in

iF
E

Co
M

D

xa
la

nc
bm

k

Av
g

Energy savings on Migration Unfriendly

OTF_HW_AR OTF_RM_adaptive_1K
OTF_RM_adaptive_16K OTF_RM_adaptive_64K
OTF_HW_AR_adaptive_3

Fig. 8. Energy savings (%) of Adaptive and Reverse migration over no-migration baseline (negative y-axis shows degradation)

6 RELATEDWORK

There have been many studies on page migration techniques for flat-address heterogeneous memory systems (HMA),

They propose different approaches to solve the general challenges associated with page migration, viz., selecting

candidate pages to migrate, determining migration frequency and managing migration metadata. Here we will review

only the works that are most closely related to our research. Meswani et al. [20] presented a study where page migration

in HMA is accomplished by a hardware/software (we refer to it as HMA-HS) mixed approach. The hardware keeps

track of the page access counts over a fixed-length epoch, and at the end of each epoch, the hottest pages residing in

slow memory are migrated to fast memory by OS, updating physical addresses of the migrating pages. There is no

restriction on to where (i.e., which HBM page frame) a hot page can be migrated. Since OS-based address update incurs

large overheads, the authors choose a longer epoch to reduce frequent OS interventions. However, it has been observed

that page migration at shorter intervals is more beneficial than waiting for longer epoch times [26, 32], since, migrating

hot pages sooner results in more beneficial accesses to the migrated pages.

Address reconciliation can be avoided using very large remap table that contains the new locations of migrated pages.

The size and management of this remap table presents a new challenge. A number of different approaches have been

proposed to keep this table in memory while using a small on-chip cache for recently accessed entries [6, 17, 26, 32].

Sim et al. used a Transparent Hardware based Management (THM) of flat-address memory [32]. THM restricts where a

migrated page can be placed to reduce the remap table: a set of slow memory pages compete for a single fast memory

page. This can reduce potential benefits since only one of the slow memory pages from a given set can be migrated to

fast memory even if all of them are heavily accessed. Chou et al. proposed a somewhat similar idea of intra-set migration

Manuscript submitted to ACM

1041

1042

1043

1044

1045

1046

1047

1048

1049

1050

1051

1052

1053

1054

1055

1056

1057

1058

1059

1060

1061

1062

1063

1064

1065

1066

1067

1068

1069

1070

1071

1072

1073

1074

1075

1076

1077

1078

1079

1080

1081

1082

1083

1084

1085

1086

1087

1088

1089

1090

1091

1092

Dynamically Adapting Page Migration Policies Based on Applications Memory Access Behaviors 21

named CAMEO [6], where the migration is done at finer granularity (cache line size) and the migration candidate

is chosen on each slow memory access. While Chameleon [18], depending on application requirement, dynamically

reconfigure the parts of stacked DRAM as flat-address memory or cache. Prodomou et al. proposed MemPod [26], which

provides more flexibility on page relocation than [6, 32]. On-chip memory controllers for fast and slow memories are

grouped into “Pods” and only intra-Pod epoch-based page migration is allowed. A low cost counter is used to keep track

of recently accessed hot pages. A more recent work, PageSeer [17] proposes extensions to memory controllers that

initiate page swaps between slow and fast memories based on TLBmisses.To use the 3D-DRAM capacity efficiently, Ryoo

et al., proposed a sub-block-based page migration and co-location of sub-blocks of two different pages in interleaved

fashion [31]. However, this scheme only allows migration of sub-blocks within same congruence group and requires

large SRAM tables to keep track of sub-blocks with bit vectors. In [30] the granularity of the data migrated depends on

the contiguity of accesses in the virtual address space. In our work, migration granularity is fixed; however, we have

included an evaluation of how the page size impacts the performance of page migrations.

In our proposal we migrate a page immediately when it receives sufficient number of memory accesses, unlike

any epoch-based schemes described above. We allow full flexibility in page relocation like HMA-HS [20] and keep a

small on chip ReMap table for address redirection. Similar approach has been proposed by Ramos et al. [28], which

also performs on-the-fly type of migration with periodical reconciliation of remapping table entries and OS memory

mappings. However, in [28] the migration and reconciliation processes are separate phases since the reconciliation

is completely handled by OS. In our proposal, we perform address reconciliation with help of specialized hardware

and hence these processes can progress concurrently. Furthermore, our migration candidate choice scheme is simpler

than multi-queue scheme used by [28]. We also study dynamic adjustments to page migrations: we change hotness

thresholds to reduce or increase the number of pages migrated or pause migrations when insignificant benefits are

observed. We also explore reverse migration of pages to eliminate address reconciliations.

In [37], the authors propose a technique (called Banshee) for transferring pages between off-chip memory and

on-chip DRAM cache. Instead of storing tags for DRAM cache, Banshee uses Tag-buffers, somewhat similar to our

ReMap tables. As the Tag-buffer fill up, the user programs are stopped and OS updates the TLB (and PTE) entries to

reflect the new location of pages– again somewhat similar to our address reconciliation. However, unlike our hardware

orchestrated approach, they rely on OS for address reconciliation. Moreover, Banshee assumes that the two levels

of memory (on-chip and off-chip DRAMs) have similar latencies but differ in bandwidth, while we assume memory

technologies with significantly different latencies and bandwidths.

Conventional NUMA (Non-Uniform Memory Access) systems with Multi-socket CPU and homogeneous memory

emulate data migration between local and remote nodes. Accesses to data within local memory are faster compared to

remote memory locations. The main difference between NUMA and HMA data migration is that, NUMA migration

occurs when cores from different sockets need to work on the same data. This issue of on-demand migration is mitigated

in these [33], [38] works by running multiple threads which share data on the same node, while in HMA, pages are

migrated in a single-node system.

7 CONCLUSIONS AND FUTUREWORK

In this paper, we extended our previous study [13] of on-the-fly (OTF) page migration technique that migrates a page

from slow non-volatile memory (NVM) to fast memory (such as HBM) as soon as the page becomes "hot". For this

contribution we employ adaptive migration techniques that dynamically change the frequency and the number of pages

migrated, and pause or resume migrations based on the memory access behavior of applications. We use three different

Manuscript submitted to ACM

1093

1094

1095

1096

1097

1098

1099

1100

1101

1102

1103

1104

1105

1106

1107

1108

1109

1110

1111

1112

1113

1114

1115

1116

1117

1118

1119

1120

1121

1122

1123

1124

1125

1126

1127

1128

1129

1130

1131

1132

1133

1134

1135

1136

1137

1138

1139

1140

1141

1142

1143

1144

22 Shashank Adavally, Mahzabeen Islam, and Krishna Kavi

adaptive techniques. (1) We monitor the number of pages migrated in a given observation window (mig_count_adaptive).

If the number exceeds a threshold, we increase the hotness threshold so that the number of migrations are reduced

(likewise, reduce the threshold if the number of pages migrated is below a threshold). (2) We monitor the Migration

Benefit Quotient (the average number of accesses to page after migration, which indicates the usefulness of a migration,

MBQ_adaptive) and either increase or reduce migrations based on the MBQ. We pause migrations temporarily if

the MBQ is too low, and resume migrations if the MBQ increases. (3) We explore a combination of the previous two

approaches: we monitor the number of pages migrated in a window and increase hotness threshold if too many pages

are migrated and the MBQ is low. Likewise, we reduce the threshold when the number of pages migrated is low and

MBQ is high. The first technique has resulted in an average of 71% IPC improvement over the baseline for migration

friendly workloads, but more importantly, our technique has shown on average 2% performance gains over the baseline

even for unfriendly workloads. In terms of energy consumption, this technique has achieved 25% energy savings

compared to the baseline for migration friendly and but has consumed 3% more energy than the baseline for unfriendly

workloads. This should be compared with static threshold on-the-fly migration technique which consumes 17% more

energy than the baseline. The second technique that monitors MBQ, has achieved an average performance gain of 65%

over the baseline for migration friendly workloads, 3% gains for migration unfriendly workloads and has resulted in 22%

energy savings for migration friendly, while consuming 2% more energy for migration unfriendly applications over the

baseline. The third technique which combines the previous two adaptive techniques resulted in 81% performance gains

on average over the baseline for migration friendly workloads and 2% gains even for migration unfriendly workloads.

Our adaptive techniques eliminates the need for off-line profiling of applications to categorize them as a migration

friendly or unfriendly. We feel that additional adaptive techniques may further improve the performance gains when

relying page migrations in multi-level heterogeneous memories.

We also experimented with reverse migration of pages, eliminating address reconciliation (making the page migration

completely transparent to OS). When ReMap table is almost full, ReMap entries are freed for new page migrations by

reverse migrating pages with low MBQ back to their original locations. We tested with ReMap table sizes of 1K, 16K and

64K entries. The reverse migration technique has achieved performance improvements of 2%, 41% and 57% respectively

for migration friendly workloads and 3%, 3% and 3% respectively for migration unfriendly workloads. Regarding energy

savings, reverse migration technique has achieved 0%, 21% and 29% for migration friendly and has consumed 1%, 4% and

4% respectively for migration unfriendly workloads. It can be observed that the static OTF technique (OTF_HW_AR)

achieved 28% energy savings, that is lower than reverse migration technique with 64K ReMap table entries by 1% but

require more area for the extra ReMap table. We feel that reverse migration can be used when dealing with very large

pages. Since migrating huge pages can be very expensive, one can consider migrating only hot subpages of a huge page

and reverse migrate the subpages as they become cold. We plan to explore such subpage migrations in the future.

8 ACKNOWLEDGEMENTS

This research is supported in part by NSF Awards #1828105 and #1361806. The authors would also like to acknowledge

Nuwan Jayasena and Mike Ignatowski of AMD for their feedback and suggestions throughout the conduct of this

research.

REFERENCES
[1] [n.d.]. Proxy-Apps for Neutronics. https://cesar.mcs.anl.gov/content/software/neutronics.

Manuscript submitted to ACM

1145

1146

1147

1148

1149

1150

1151

1152

1153

1154

1155

1156

1157

1158

1159

1160

1161

1162

1163

1164

1165

1166

1167

1168

1169

1170

1171

1172

1173

1174

1175

1176

1177

1178

1179

1180

1181

1182

1183

1184

1185

1186

1187

1188

1189

1190

1191

1192

1193

1194

1195

1196

Dynamically Adapting Page Migration Policies Based on Applications Memory Access Behaviors 23

[2] Amro Awad, Arkaprava Basu, Sergey Blagodurov, Yan Solihin, and Gabriel H Loh. 2017. Avoiding TLB shootdowns through self-invalidating TLB

entries. In Parallel Architectures and Compilation Techniques (PACT), 2017 26th International Conference on. IEEE, 273–287.
[3] Chaim Bendelac and Panos Kokkalis. 2017. SAP HANA Memory Usage Explained. https://www.sap.com/documents/2016/08/205c8299-867c-0010-

82c7-eda71af511fa.html. [Online; accessed January-20-2019].

[4] Tim Bird. 2009. Measuring function duration with ftrace. In Proceedings of the Linux Symposium. Citeseer, 47–54.

[5] Daniel P Bovet and Marco Cesati. 2005. Understanding the Linux Kernel: from I/O ports to process management. " O’Reilly Media, Inc.".

[6] Chiachen Chou, Aamer Jaleel, and Moinuddin K Qureshi. 2014. CAMEO: A Two-Level Memory Organization with Capacity of Main Memory and

Flexibility of Hardware-Managed Cache. In Proceedings of the 47th Annual IEEE/ACM International Symposium on Microarchitecture. IEEE Computer

Society, 1–12.

[7] HMC Consortium. 2018. Hybrid Memory Cube Consortium. http://hybridmemorycube.org/. [Online; accessed July-27-2018].

[8] Joint Electron Devices Engineering Council. 2018. 3D ICs. http://www.jedec.org/category/technology-focus-area/3d-ics-0. [Online; accessed

July-27-2018].

[9] DOE. 2018. US Department of Energy ECP Proxy Application Suite. https://proxyapps.exascaleproject.org/ecp-proxy-apps-suite/.

[10] Harish Patil. 2018. PinPlay. https://software.intel.com/en-us/articles/program-recordreplay-toolkit.

[11] M Heroux and S Hammond. 2015. MiniFE: finite element solver.

[12] RD Hornung, JA Keasler, and MB Gokhale. 2011. Hydrodynamics challenge problem. Technical Report. Lawrence Livermore National Lab.(LLNL),

Livermore, CA (United States).

[13] Mahzabeen Islam, Shashank Adavally, Marko Scrbak, and Krishna Kavi. 2020. On-the-Fly Page Migration and Address Reconciliation for Heteroge-

neousMemory Systems. To Appear in ACM Journal on Emerging Technologies in Computing Systems (2020). http://csrl.cse.unt.edu/kavi/Research/JETC-
2019.pdf

[14] Jewillco. 2015. Graph500-v2-spec. https://github.com/graph500/graph500/tree/v2-spec.

[15] Kimberly Keeton. 2017. Memory-Driven Computing. USENIX Association, Santa Clara, CA.

[16] Y. Kim, W. Yang, and O. Mutlu. 2016. Ramulator: A Fast and Extensible DRAM Simulator. IEEE Computer Architecture Letters 15, 1 (2016), 45–49.
[17] A. Kokolis, D. Skarlatos, and J. Torrellas. 2019. PageSeer: Using page walks to trigger page swapps in hybrid memory systems. In Proceedings of the

25th IEEE International Symposium on High Performance Computer Architecture. IEEE.
[18] J. B. Kotra, H. Zhang, A. R. Alameldeen, C. Wilkerson, and M. T. Kandemir. 2018. CHAMELEON: A Dynamically Reconfigurable Heterogeneous

Memory System. In 2018 51st Annual IEEE/ACM International Symposium on Microarchitecture (MICRO). 533–545. https://doi.org/10.1109/MICRO.

2018.00050

[19] E. Kultursay, M. Kandemir, Sivasubramaniam, and O. A., Mutlu. 2013. Evaluating STT-RAM as an energy-efficient main memory alternative. In

Proceedings of the 2013 IEEE International Symposium on Performance Analysis of Systems Software. IEEE.
[20] Mitesh R Meswani, Sergey Blagodurov, David Roberts, John Slice, Mike Ignatowski, and Gabriel H Loh. 2015. Heterogeneous memory architectures:

A hw/sw approach for mixing die-stacked and off-package memories. In High Performance Computer Architecture (HPCA), 2015 IEEE 21st International
Symposium on. IEEE, 126–136.

[21] Jamaludin Mohd-Yusof, Sriram Swaminarayan, and Timothy C Germann. 2013. Co-design for molecular dynamics: An exascale proxy application,

2013.

[22] David Mosberger and Stephane Eranian. 2001. IA-64 Linux kernel: design and implementation. Prentice Hall PTR.
[23] N. Muralimanohar, Rajeev Balasubramonian, and N. Jouppi. 2007. CACTI 6 . 0 : A Tool to Understand Large Caches.

[24] Prashant J Nair, Chiachen Chou, Bipin Rajendran, and Moinuddin K Qureshi. 2015. Reducing read latency of phase change memory via early read

and Turbo Read. In High Performance Computer Architecture (HPCA), 2015 IEEE 21st International Symposium on. IEEE, 309–319.
[25] Osnat Levi (Intel). 2018. Pin - A Dynamic Binary Instrumentation Tool. https://software.intel.com/en-us/articles/pin-a-dynamic-binary-

instrumentation-tool.

[26] Andreas Prodromou, Mitesh Meswani, Nuwan Jayasena, Gabriel Loh, and Dean M Tullsen. 2017. MemPod: A clustered architecture for efficient

and scalable migration in flat address space multi-level memories. In High Performance Computer Architecture (HPCA), 2017 IEEE International
Symposium on. IEEE, 433–444.

[27] Moinuddin K Qureshi, Sudhanva Gurumurthi, and Bipin Rajendran. 2011. Phase Change Memory: From devices to Systems. Synthesis Lectures on
Computer Architecture 6, 4 (2011), 1–134.

[28] Luiz E Ramos, Eugene Gorbatov, and Ricardo Bianchini. 2011. Page placement in hybrid memory systems. In Proceedings of the international
conference on Supercomputing. ACM, 85–95.

[29] Bogdan F Romanescu, Alvin R Lebeck, Daniel J Sorin, and Anne Bracy. 2010. UNified instruction/translation/data (UNITD) coherence: One protocol

to rule them all. In Proceedings-International Symposium on High-Performance Computer Architecture.
[30] Jee Ho Ryoo, Lizy K. John, and Arkaprava Basu. 2018. A Case for Granularity Aware Page Migration. In Proceedings of the 32nd International

Conference on Supercomputing, ICS 2018, Beijing, China, June 12-15, 2018. 352–362. https://doi.org/10.1145/3205289.3208064

[31] Jee Ho Ryoo, Mitesh R Meswani, Andreas Prodromou, and Lizy K John. 2017. SILC-FM: Subblocked interleaved cache-like flat memory organization.

In High Performance Computer Architecture (HPCA), 2017 IEEE International Symposium on. IEEE, 349–360.
[32] Jaewoong Sim, Alaa R Alameldeen, Zeshan Chishti, Chris Wilkerson, and Hyesoon Kim. 2014. Transparent hardware management of stacked dram

as part of memory. In Microarchitecture (MICRO), 2014 47th Annual IEEE/ACM International Symposium on. IEEE, 13–24.

Manuscript submitted to ACM

https://www.sap.com/documents/2016/08/205c8299-867c-0010-82c7-eda71af511fa.html
https://www.sap.com/documents/2016/08/205c8299-867c-0010-82c7-eda71af511fa.html
http://hybridmemorycube.org/
http://www.jedec.org/category/technology-focus-area/3d-ics-0
https://software.intel.com/en-us/articles/program-recordreplay-toolkit
http://csrl.cse.unt.edu/kavi/Research/JETC-2019.pdf
http://csrl.cse.unt.edu/kavi/Research/JETC-2019.pdf
https://github.com/graph500/graph500/tree/v2-spec
https://doi.org/10.1109/MICRO.2018.00050
https://doi.org/10.1109/MICRO.2018.00050
https://software.intel.com/en-us/articles/pin-a-dynamic-binary-instrumentation-tool
https://software.intel.com/en-us/articles/pin-a-dynamic-binary-instrumentation-tool
https://doi.org/10.1145/3205289.3208064

1197

1198

1199

1200

1201

1202

1203

1204

1205

1206

1207

1208

1209

1210

1211

1212

1213

1214

1215

1216

1217

1218

1219

1220

1221

1222

1223

1224

1225

1226

1227

1228

1229

1230

1231

1232

1233

1234

1235

1236

1237

1238

1239

1240

1241

1242

1243

1244

1245

1246

1247

1248

24 Shashank Adavally, Mahzabeen Islam, and Krishna Kavi

[33] F. Song, S. Moore, and J. Dongarra. 2009. Analytical modeling and optimization for affinity based thread scheduling on multicore systems. In 2009
IEEE International Conference on Cluster Computing and Workshops. 1–10. https://doi.org/10.1109/CLUSTR.2009.5289173

[34] spec. 2015. SPEC CPU 2006. https://www.spec.org/cpu2006/.

[35] ChunYi Su, David Roberts, Edgar A León, Kirk W Cameron, Bronis R de Supinski, Gabriel H Loh, and Dimitrios S Nikolopoulos. 2015. HpMC: An

Energy-aware Management System of Multi-level Memory Architectures. In Proceedings of the 2015 International Symposium on Memory Systems.
ACM, 167–178.

[36] Carlos Villavieja, Vasileios Karakostas, Lluis Vilanova, Yoav Etsion, Alex Ramirez, Avi Mendelson, Nacho Navarro, Adrian Cristal, and Osman S

Unsal. 2011. Didi: Mitigating the performance impact of tlb shootdowns using a shared tlb directory. In Parallel Architectures and Compilation
Techniques (PACT), 2011 International Conference on. IEEE, 340–349.

[37] Xiangyao Yu, Christopher J. Hughes, Nadathur Satish, Onur Mutlu, and Srinivas Devadas. 2017. Banshee: Bandwidth-efficient DRAM Caching via

Software/Hardware Cooperation. In Proceedings of the 50th Annual IEEE/ACM International Symposium on Microarchitecture (MICRO-50 ’17). ACM,

New York, NY, USA, 1–14. https://doi.org/10.1145/3123939.3124555

[38] I. Ştirb. 2018. NUMA-BTLP: A static algorithm for thread classification. In 2018 5th International Conference on Control, Decision and Information
Technologies (CoDIT). 882–887. https://doi.org/10.1109/CoDIT.2018.8394925

Manuscript submitted to ACM

https://doi.org/10.1109/CLUSTR.2009.5289173
https://www.spec.org/cpu2006/
https://doi.org/10.1145/3123939.3124555
https://doi.org/10.1109/CoDIT.2018.8394925

	Abstract
	1 Introduction
	2 Background and Motivation
	2.1 On-The-Fly Page Migration
	2.2 User Transparent Page Migration
	2.3 Address Reconciliation
	2.4 Analysis of Fixed Hotness Threshold Experiments
	2.5 Motivation

	3 Adaptive Migration
	3.1 Adaptive Migration Based on Number of Pages Migrated
	3.2 Adaptive Migration Based on MBQ
	3.3 Reverse Migration

	4 Experimental Setup
	4.1 Simulation Infrastructure
	4.2 Workloads

	5 Results and Analyses
	5.1 Adaptive Hotness Thresholds
	5.2 Evaluation of Adaptive Control Based on Number of Pages Migrated
	5.3 Evaluation of Adaptive Control Based on Migration Benefit Quotient
	5.4 Evaluation of Adaptive Migrations Based on Combined Technique
	5.5 Reverse Migration of Pages
	5.6 Subpage Migration
	5.7 Energy Consumption

	6 Related Work
	7 Conclusions and future work
	8 Acknowledgements
	References

