
This article was published in an Elsevier journal. The attached copy
is furnished to the author for non-commercial research and

education use, including for instruction at the author’s institution,
sharing with colleagues and providing to institution administration.

Other uses, including reproduction and distribution, or selling or
licensing copies, or posting to personal, institutional or third party

websites are prohibited.

In most cases authors are permitted to post their version of the
article (e.g. in Word or Tex form) to their personal website or
institutional repository. Authors requiring further information

regarding Elsevier’s archiving and manuscript policies are
encouraged to visit:

http://www.elsevier.com/copyright

http://www.elsevier.com/copyright


Author's personal copy

Feasibility of decoupling memory management from
the execution pipeline

Wentong Li, Mehran Rezaei, Krishna Kavi *, Afrin Naz, Philip Sweany

Department of Computer Science and Engineering, University of North Texas, P.O. Box 311366, Denton, TX 76203, United States

Received 23 August 2006; accepted 6 March 2007
Available online 20 March 2007

Abstract

In conventional architectures, the central processing unit (CPU) spends a significant amount of execution time allocat-
ing and de-allocating memory. Efforts to improve memory management functions using custom allocators have led to only
small improvements in performance. In this work, we test the feasibility of decoupling memory management functions
from the main processing element to a separate memory management hardware. Such memory management hardware
can reside on the same die as the CPU, in a memory controller or embedded within a DRAM chip. Using Simplescalar,
we simulated our architecture and investigated the execution performance of various benchmarks selected from SPE-
CInt2000, Olden and other memory intensive application suites.

Hardware allocator reduced the execution time of applications by as much as 50%. In fact, the decoupled hardware
results in a performance improvement even when we assume that both the hardware and software memory allocators
require the same number of cycles. We attribute much of this improved performance to improved cache behavior since
decoupling memory management functions reduces cache pollution caused by dynamic memory management software.
We anticipate that even higher levels of performance can be achieved by using innovative hardware and software optimi-
zations. We do not show any specific implementation for the memory management hardware. This paper only investigates
the potential performance gains that can result from a hardware allocator.
� 2007 Elsevier B.V. All rights reserved.

Keywords: Memory management; Software allocators; Hardware allocators; Cache pollution

1. Introduction and motivation

Modern programming languages often permit
complex dynamic memory allocation and garbage
collection. Such features provide computer systems
architects with a challenge of reducing the overheads

due to memory management functions. The chal-
lenge is further exacerbated by the ever-increasing
gap between memory and processor speeds. Some
researchers chose to employ custom memory alloca-
tion methods into their systems; however, it has been
shown that such custom allocators generally do not
improve performance [1]. Multithreading has been
promoted as a way of tolerating memory latencies.
But multithreading has not been used directly to
address complex memory management functions.

1383-7621/$ - see front matter � 2007 Elsevier B.V. All rights reserved.

doi:10.1016/j.sysarc.2007.03.003

* Corresponding author. Tel.: +1 940 565 2767; fax: +1 940 565
2799.

E-mail address: kavi@cse.unt.edu (K. Kavi).

Journal of Systems Architecture 53 (2007) 927–936

www.elsevier.com/locate/sysarc



Author's personal copy

Even if a dedicated thread (such as a worker thread)
were used for memory management, it is unclear
whether performance improvement could be
achieved, since memory management threads would
compete for CPU and cache resources.

Rezaei and Kavi [2] have studied the cache
behavior and the pollution of the cache due to the
bookkeeping meta-data used by memory allocation
functions. This study suggests that if a separate
logic is used to perform the memory management
functions, the cache performance of the application
can be improved. In our research, we advocate the
use of separate processing logic to implement mem-
ory management functions, whether integrated
along with the CPU, incorporated within a memory
controller, or embedded within IRAM [3]. We
report the impact of a separate hardware allocator
on total execution times (not just cache perfor-
mance). In this paper we do not show either a spe-
cific architecture or implementation of the separate
hardware memory manager. We only show the
potential performance gains resulting from a decou-
pled hardware memory manager.

We conduct simulations, varying the speed of the
hardware allocator. We show that even when the
hardware allocator is assumed to take the same
number of execution cycles as a software implemen-
tation, the decoupled implementation results in per-
formance gains. In some cases, the decoupling
produced performance improvements that are larger
than the number of CPU cycles consumed if the
allocator is implemented in software. We attribute
this ‘‘super-linear’’ speedup primarily to the
improvement of CPU cache performance, because
CPU cache is not polluted by bookkeeping data
needed for memory management. However, for
some applications, a slow hardware allocator has
led to no performance improvements, as the appli-
cation may have to wait for the allocator. This will
not be the case on multithreaded architectures since
it would be possible to switch to another active
thread while awaiting the allocation. In addition,
we will outline some techniques that can be used
to eliminate the CPU stalls due to memory manage-
ment. The elimination of CPU stalls will result in
substantial reduction of execution cycles of the
application.

The rest of the paper is organized as follows: We
present the related research in Section 2; we describe
the experimental framework and the benchmarks
used in Section 3; we analyze the results in Section
4; we outline some optimization for hardware allo-

cator in Section 5; and we draw our conclusions in
Section 6.

2. Related research

Several research threads, including custom allo-
cators, and hardware implementation of memory
management function, have influenced our research.

Dynamic memory management is an important
problem studied by researchers for the past several
decades. Modern programming languages and
applications are driving the need for more efficient
implementations of memory management functions,
in terms of both memory usage and execution per-
formance. Several researchers have proposed and
implemented custom allocators and garbage collec-
tors to improve performance of applications requir-
ing dynamic memory management. Berger et al.
describe a comprehensive evaluation of custom
memory allocators for a wide range of benchmarks
including SPECint2000 and memory intensive
applications [1]. There are two key findings from
their study that are relevant to our research: (1)
The total execution time spent on memory manage-
ment functions can be significant (as high as 41.8%
for parser) and (2) Custom allocators do not
improve performance when compared to a gen-
eral-purpose allocator (such as the one by Lea).
The first observation is significant since it supports
our efforts to decouple memory management func-
tions from the primary execution engine. As for
the second finding, while it may be true that soft-
ware implementations of custom allocators do not
seem to improve performance over Lea’s allocator,
allocators may exhibit different behaviors in terms
of cache performance of the allocated objects, and
the complexity of hardware implementations. It
has been shown that allocators do lead to different
cache behaviors of allocated objects [4,5]. Research-
ers have explored ‘‘cache conscious’’ allocation of
objects specifically because of such differences.
Hardware implementations of buddy systems (or
variances) are easier to implement than more tradi-
tional linked-list based allocations. However, cache
performance can be poor with such allocators
because of the high internal fragmentation inherent
with buddy systems. We argue that it is still unan-
swered as to which allocator provides the best hard-
ware implementation and permits cache conscious
memory allocation.

Dynamic storage allocators are traditionally
implemented as software within a system’s run-time

928 W. Li et al. / Journal of Systems Architecture 53 (2007) 927–936



Author's personal copy

environment. As previously mentioned, application-
specific custom allocators do not necessarily lead to
better performance. This suggests that a general-
purpose allocator (e.g., Lea allocator) should be
explored for hardware implementation. While we
do not know of any hardware implementations of
Lea, several hardware allocators based on buddy
systems have been proposed. Lai et al. [6] and
Donahue et al. [7] describe hardware implementa-
tions of an Estranged Buddy algorithms, which is
a variation of Knuth’s Buddy allocator. In
Estranged Buddy algorithms, buddies are not imme-
diately combined into larger chunks, thus eliminat-
ing the need for later breaking larger chunks into
smaller ones. Other hardware implementations of
memory management functions have been reported
in [8–10]. These studies focus on hardware complex-
ity and the speed of the hardware allocators, but
they do not report the actual execution performance
gains for applications. Our emphasis is on the per-
formance impact of using hardware allocators for
a wide range of benchmarks.

3. Experimental framework

To evaluate the potential for decoupling mem-
ory management, we constructed experiments to
reflect conditions as close to real execution envi-
ronments as possible. We have identified and
controlled experimental parameters such as
machine model(s), appropriate benchmarks, and
statistical attributes of interest. In this section we
describe our methodology and the selection of
benchmarks.

3.1. Simulation methodology

For the purpose of studying the performance
implications of decoupling memory management,
we extended the SimpleScalar/PISA Tool Set, version
3 [11]. We assumed the existence of hardware for
memory management in the form of a separate hard-
ware unit. Our simulated memory management hard-
ware behaves in the same fashion as Lea’s allocator
[12] used in LINUX system. We further assumed that
the hardware functional unit is not pipelined. The
later allocation or de-allocation request must wait
for the previous requests to finish. In a real imple-
mentation, one can use pipelined hardware for mem-
ory management to process ‘‘bursts’’ of allocation
requests, particularly for applications that allocates
several objects together. We added two instructions,

‘‘alloc’’ for allocation and ‘‘dealloc’’ for de-allocation,
to the instruction set of SimpleScalar. The two new
instructions are treated the same as other PISA
instructions and processed by scheduling them on
the separate hardware allocator, viewed as a func-
tional unit (similar to an integer or floating point
unit). However, when allocation and de-allocation
instructions are encountered, the reservation sta-
tions are frozen until the memory management com-
pletes and returns the results. This results in CPU
stalls, particularly when using a slow hardware allo-
cator. In an actual implementation, this restriction
can be eliminated with proper hardware/software
optimizations.

Table 1 summarizes our simulation parameters.
To explore the feasibility of this decoupling archi-
tecture, we used a wide range of allocation latencies
(i.e., time to complete an allocation request and
return the address of the allocated object), from 1
cycle to 100 cycles, to the number of cycles that
match the software allocator.

3.2. Benchmarks

Table 2 shows the benchmark programs used in
our experiments. We selected benchmarks for our

Table 1
Simulation parameters

Pipelined CPU parameters

Issue width 4

Functional units 5 Int (4 ALU, 1 Mult/Div),
5 FP (4 ALU, 1 Mult/Div),
2 Memory, 1 Allocator, 1 Branch

Register update unit size
(RUU)

8

Load/store queue size (LSQ) 4
Integer ALU 1 cycle
Integer multiply 4 cycles
Integer divide 20 cycles
FP multiply 4 cycles
FP divide 12 cycles
Branch prediction scheme Bimodal

Memory parameters
L1 data cache 4-Way set associative, 16 Kbytes
L1 data cache 4-Way set associative, 16 Kbytes
L1 instruction cache Direct mapped, 16 Kbytes
L2 unified cache 4-Way set associative, 256 Kbytes
Line size 32 bytes
L1 hit time 1 cycle
L1 miss penalty 6 cycles
Memory latency/delay 18/2 cycles
Allocation time 100 or 1 cycles
De-allocation time 1 cycle

W. Li et al. / Journal of Systems Architecture 53 (2007) 927–936 929



Author's personal copy

experiments, from SPECInt2000, memory intensive
benchmarks and Olden benchmarks. We selected
benchmarks exhibiting wide-ranging memory allo-
cation behaviors.

3.2.1. Execution behaviors

The selected benchmarks demonstrate different
levels of memory management operations, as a per-
centage of total execution times (as shown in Table
3). These levels range from very high (parser, cfrac,
treeadd) to average (espresso, voronoi), to very low
(vortex, gzip, bisort). Table 2 also shows the total
number of instructions executed by the benchmarks.
Table 3 lists the fraction of execution time spent on
memory management functions. Looking at the
fraction of time spent on memory management
functions, one might assume that this limits the per-
formance gains of a decoupled architecture (i.e., the
maximum performance gains using a hardware allo-
cator are limited by the fraction of the time spent on
memory allocation functions). However, this is not
the case since several complex features of modern
architectures impact performance. These factors
include cache misses, pipeline stalls, out-of-order
execution, and speculations. We will show that these
factors may lead to performance gains greater than
the fraction of cycles spent on memory management
functions.

3.2.2. Nature of memory usage
Wilson showed that applications exhibit different

memory allocation and usage patterns [13]. In gen-
eral, one can classify the patterns as plateau, ramp
or random. A plateau application allocates objects
at the beginning of its execution and keeps the allo-
cated memory throughout the remainder of the exe-
cution. A ramp application allocates objects
throughout the course of its execution, but does
not de-allocate memory. Thus, the amount of allo-

cated memory increases as program execution
progresses. A random application allocates and
de-allocates memory throughout its execution. The
amount of memory allocated shows a random pat-
tern with peaks and valleys. Benchmarks espresso,
and cfrac show random behavior while voronoi
and treeadd exhibit plateau behavior. Allocators
that take advantage of application behavior can
lead to improved performance.

The sizes of objects allocated also impacts the
performance of an allocator. Some applications
allocate a large number of small objects. For exam-
ple more than 99% of all objects allocated by cfrac
are objects of sizes less than 32 bytes. In some appli-
cations, the object sizes vary widely. In espresso, the
number of different object sizes exceeds 100, ranging
in sizes from 8 bytes to 5 Kbytes, although requests
for smaller objects are prevalent. The performance
of an allocator implemented in software and as a
separate hardware used for memory management
depends on the memory allocation, usage behaviors
of applications, as well as the sizes of objects allo-
cated. However, investigating the allocators’ perfor-
mance based on allocation behavior of the
applications is not the objective of our work; hence,
we will not address these issues any further in this
paper.

Table 2
Description of benchmarks

Benchmark family Benchmark name Benchmark description Input No. of instructions (million)

SPEC 164.gzip Gnu zip data compression Test 4540
197.parser English parser Test 1617
255.vortex Object oriented database Test 12,983

MEM cfrac Factoring numbers A 22 digits No. 96
espresso PLA optimizer Mpl4.espresso 73

OLDEN bisort Sorting bitonic sequences 250 K integers 607
treaded Summing values in a tree 1 M nodes 95
voronoi Computing voronoi diagram 20 K points 166

Table 3
Percentage of time spent in memory management

Benchmark name % Execution time in memory management

164.gzip 0.04
197.parser 20.65
255.vortex 0.59
cfrac 18.75
espresso 11.63
bisort 2.08
treaded 49.44
voronoi 8.75

930 W. Li et al. / Journal of Systems Architecture 53 (2007) 927–936



Author's personal copy

4. Experiment results

In this section, we report the results of our exper-
iments. We discuss both the execution performance
and cache behavior resulting from decoupling of
memory management functions.

4.1. Execution performance issues

4.1.1. 100-cycle decoupled system performance

We assume that each malloc operation takes
fixed 100 cycles in this experiment. Table 4 shows
the performance improvements achieved when a
separate hardware unit is used for all memory man-
agement functions (malloc and free). The second
column in the table shows the number of cycles
needed on a conventional architecture and the third
column shows the execution cycles needed by a
decoupled system. The fourth column shows the
percentage of speedup achieved by our architecture.
The fifth column reproduces the fraction of cycles
(from Table 3) spent on memory management func-
tions; we call it percentage of cycles in memory
management (CMM for short). The last two col-
umns of the table shows the instructions per cycle
(IPC) for hardware and software implementations
of memory allocators. In both cases, the IPC does
not exceed 1.67. Instruction count of decoupled sys-
tem is smaller than the conventional architecture,
since software implementation of the memory man-
agement functions is replaced by the hardware.
Smaller IPC in the decoupled system can be due
to the non-pipelined implementation of the memory
management hardware and the freezing of the reser-
vation stations on malloc requests (see Section 3.1).
These restrictions limit the amount of Instruction
Level Parallelism (ILP). It means that the number
of eliminated cycles is less than the number of elim-
inated instructions.

Before discussing the range of speedups achieved
using a slow allocator (fourth column of Table 4 –
100 cycle Decoupled), we should re-emphasize that
100 cycles for a hardware implementation of mem-
ory management functions implies a slow hardware.
In contrast, Chang and Gehringer describe hard-
ware that requires, on average, 4.82 cycles [8]. With
our slow implementation using 100 cycles, it is pos-
sible for the CPU to idle waiting for a memory allo-
cation as reflected by lower IPC counts.

We notice two anomalies when examining the
speedup achieved using 100-cycle hardware imple-
mentation (fourth column of Table 4). First, for
some benchmark programs (vortex, bisort), even a
100-cycle hardware memory manager achieves
higher performance than the fraction of cycles spent
on memory management functions by a software
implementation (comparing columns 4 and 5 of
Table 4). We will show shortly that this is in part
due to the CPU cache misses eliminated by moving
memory management to dedicated hardware. The
second anomaly is for voronoi and treeadd pro-
grams; the decoupled system shows performance
degradation for these benchmarks. We believe that
this is due to two factors: (1) CPU stalls resulting
from a slow allocator (compare the IPCs) and (2)
the allocation behavior of the application. The soft-
ware allocator (Lea’s) takes advantage of the alloca-
tion behavior of these programs. These programs
perform all of their allocations at the beginning of
the execution and keep all the allocated memory
throughout the execution. In addition, most allo-
cated objects are small and belong to 8, 16 or 32
byte chunks. These sizes can be allocated very fast
in Lea’s allocator.

4.1.2. 1-cycle decoupled system performance

Table 5 shows the execution speedup achieved
assuming 1-cycle for all memory management

Table 4
Execution performance of separate hardware for memory management

Benchmark name CC (cycle count) million Speedup (%) CMM (%) IPC (instructions per cycle)

CONV Decoupled CONV Decoupled

164.gzip 2725 2724 0.0309 0.04 1.67 1.67
197.parser 1322 1280 3.19 20.65 1.57 1.26
255.vortex 12,771 12,602 1.34 0.59 1.00 1.03
cfrac 107 99 7.83 18.75 1.16 0.96
espresso 46 45 1.44 11.63 1.18 1.46
bisort 474 426 10.03 2.08 1.31 1.42
treaded 134 165 �23.19 49.44 1.59 0.58
voronoi 123 123 �0.01 8.75 1.38 1.23

W. Li et al. / Journal of Systems Architecture 53 (2007) 927–936 931



Author's personal copy

functions. This data places an upper bound on per-
formance improvement for decoupled memory
management architecture. We will discuss some
techniques for achieving faster allocators later in
this paper. Such implementations would eliminate
CPU stalls awaiting an allocation, since allocations
take only one cycle.

Note that eliminating the CPU stalls using a 1-
cycle hardware implementation produces a ‘‘super-
linear’’ speedup for almost all the benchmarks
(fourth column, compared with fifth column of
Table 5). The speedup for the 1-cycle decoupled sys-
tem should be at least the same as the percentage of
cycles spent in memory management (CMM) in
convectional architecture. This can be viewed as lin-
ear speedup. If the percentage of speedup greater
than the percentage of the CMM, the system has
achieved a super-linear speedup. According to the
data shown in Table 5, 1-cycles decoupled system
reveals super-linear speedup for all the applications
except gzip and parser. We attribute the super-linear
performance to the removal of conflict (cache)
misses between the memory allocation functions
and the applications. In Section 4.2, we have also
investigate the first level cache performance of our
selected benchmarks.

4.1.3. Lea-cycle decoupled system performance

Table 6 shows the average number of cycles spent
per malloc call when a software implementation of
the Lea allocator is used. Note that the second col-
umn of Table 6 shows the average number of CPU
cycles per memory management function (not the
percentage shown in the other tables thus far). In
our experiments thus far we have used a fixed num-
ber of cycles (either 100 or 1) for each allocation
when implemented in hardware. However, as shown
in Table 6, software allocators take different
amounts of times for allocation, depending on the

size of the object and the amount of search needed
to locate a chunk of memory sufficient to satisfy
the request. We repeated our experiments using
the same average number cycles for a hardware allo-
cator as that for the software implementations
respectively (second column of Table 6). The perfor-
mance gains of these experiments are shown in the
third column of Table 6.

Based on the data shown in Table 6, we classify
the benchmarks into three groups. The first group
consists of benchmark with an average number of
cycles per memory management request exceeding
100 cycles (viz., gzip and vortex). For these types
of benchmarks, the performance of Lea’s allocator
is poor since they allocate objects with very large
sizes. Lea’s allocator has to request memory from
the system for each large object. The second group,
which includes the majority of the benchmarks,
requires less than 100 cycles per memory manage-
ment request, and this group includes parser, cfrac,
espresso, bisort, and voronoi. For these applica-
tions, even when the number of cycles needed per
memory allocation by the hardware allocator is set
equal to those of a software allocator, the perfor-
mance gained by the decoupled allocator is notice-
able. The third group of applications that includes
treeadd, generate allocation requests in burst (sev-

Table 5
Execution limits of separate hardware for memory management

Benchmark name CC (cycle count) million Speedup (%) CMM (%) IPC (instrucitons per cycle)

CONV Decoupled CONV Decoupled

164.gzip 2725 2724 0.03 0.04 1.67 1.67
197.parser 1322 1074 18.81 20.65 1.57 1.51
255.vortex 12,771 12,591 1.41 0.59 1.00 1.03
cfrac 107 78 27.65 18.75 1.16 1.23
espresso 46 39 14.85 11.63 1.18 1.67
bisort 474 413 12.76 2.08 1.31 1.47
treaded 134 63 52.65 49.44 1.59 1.51
voronoi 123 111 10.37 8.75 1.38 1.37

Table 6
Average number of malloc cycles needed by Lea allocator

Benchmark name Average CMM % of Speedup

164.gzip 790 0
197.parser 69 10.02
255.vortex 401 0.88
cfrac 93 8.8
espresso 87 4.08
bisort 90 10.95
treaded 67 0
voronoi 79 2.22

932 W. Li et al. / Journal of Systems Architecture 53 (2007) 927–936



Author's personal copy

eral allocation requests in sequence). For these
applications, our current hardware allocator causes
CPU stalls since our hardware is not pipelined,
resulting in performance degradations.

4.2. Cache performance issues

Previously we stated that the ‘‘super-linear’’
speedup with separate 100-cycle hardware for mem-
ory management functions (at least for vortex and
bisort) is due in part to the elimination of CPU
cache misses. We now explore this in more detail.
Tables 7 and 8 show the data for L-1 instruction
and data caches.

The reduction in instruction cache misses can be
more easily understood since instructions compris-
ing malloc and free functions implemented in soft-
ware are removed from the execution pipeline. The
reduction in data references and misses (Table 8)
is because the allocation bookkeeping meta-data
maintained by the allocator is no longer brought
into CPU cache. Our results are similar in spirit to
those of [2], but differ in actual values.

Using miss penalties from Simplescalar, as well
as the memory accesses eliminated (both from
Instruction and Data caches), we can estimate the
number of cycles eliminated from CPU execution.

This should indicate the performance contribution
due to improved CPU cache performance. For
example, for vortex, the elimination of some mem-
ory accesses for instructions and data as well as
the reduction in cache misses has contributed to
2% of the 2.81% improvement shown in Table 4;
the remaining performance is mostly due to the
elimination of instructions from the execution pipe-
line. Note that for vortex, since this application
shows a CPI close to 1 cycle on average, computing
the contribution of reduced cache misses to the
overall performance gains is straightforward. Simi-
lar computations can be used to find the perfor-
mance gains due to improve cache performance
for other benchmarks; however such computations
are more complex because an IPCs that is not equal
to one reflect out-of-order execution of instructions.

5. Simple optimization of the decoupled memory

manager

In general, a hardware implementation of any
function should require fewer cycles than a corre-
sponding software implementation. The perfor-
mance of a hardware implementation of Lea’s
allocator can also be improved for applications such

Table 7
L-1 instruction cache behavior

Benchmark name Conventional architecture Decoupled architecture

No. of references (million) No. of misses (thousand) No. of references (million) No. of misses (thousand)

164.gzip 5145 70,412 5144 70,356
197.parser 2320 10,841 1825 6040
255.vortex 14,148 974,678 14,094 959,584
cfrac 140 7048 107 4122
espresso 86 1286 77 779
bisort 697 1.1 700 1.08
treaded 257 1.3 124 0.98
voronoi 187 1023 174 1214

Table 8
L-1 data cache behavior

Benchmark name Conventional architecture Decoupled architecture

No. of references (million) No. of misses (thousand) No. of references (million) No. of misses (thousand)

164.gzip 1504 37,616 1504 37,577
197.parser 927 11,659 677 8298
255.vortex 6920 70,412 6875 68,828
cfrac 50 10 37 9.9
espresso 23 94 20 74
bisort 161 2193 156 2193
treaded 88 1086 40 1056
voronoi 58 1054 33 928

W. Li et al. / Journal of Systems Architecture 53 (2007) 927–936 933



Author's personal copy

as voronoi and treeadd which make bursts of malloc
calls. In such cases the (hardware) allocator could
predict that the next malloc request would be for
the same sized object as the previous request. Thus
the allocator could pre-allocate similar-sized
objects. If the prediction were correct, future malloc
requests would be satisfied very quickly, say in 10
cycles, instead of 100 cycles. If the prediction were
incorrect, the next malloc would consume 100
cycles. The last column of Table 9 shows the results
using this predicted allocation technique.

The behavior observed is similar to Balakrishnan
and Sohi [14] that states that for some SPEC
CPU2000 benchmarks, 95% of the calls to malloc
are for the same-sized of objects as other malloc
calls. The data clearly shows that prediction works
well for treeadd and vernoi, that have shown
degraded performance when using an 100-cycle
hardware. In most cases the results are very close
to those of a 1-cycle hardware implementation data
(compare second and third columns of Table 9),
suggesting that it is possible to achieve faster hard-
ware performance for memory management even
without assuming very fast hardware. Reducing
the average latency of memory allocation requests
will also reduce CPU stalls. For cfrac and espresso,
prediction is not very accurate because of the mem-
ory usage patterns. However, we get about 25% per-
formance improvements over the case where the
hardware allocator was assumed to take the same
number of cycles as its software counterpart.

6. Conclusions and future research

In this study we have shown that decoupling
memory management functions from the processing
pipeline can lead to improved performance. Several
features impact performance of modern architec-
tures. Among these are out-of-order execution,

speculative execution, and cache hierarchies. Appli-
cation characteristics in terms of memory usage, dis-
tribution of allocation requests over the lifetime of
the application, and the sizes of objects requested
also impact performance. Decoupling eliminates a
fraction of the instructions and data accesses from
the primary processing element, thus improving
cache performance. The processing pipeline may
freeze if malloc requests come in bursts. We
explored the impact of these issues and presented
data to reflect the contributions due to various
factors.

In this study, we only explored the performance
gains possible by decoupling memory management
functions from the processor pipeline. We have not
explored the various implementation alternatives of
memory management in hardware. The memory
processor can be embedded in a DRAM or included
in a memory controller. The memory processor may
even be integrated on the same die as a CPU. The
implementation can be based on a general-purpose
pipelined processing unit or an ASIC. If a general-
purpose processor is used, it becomes possible to
support user-level custom allocators in decoupled
memory management architecture.

Our study paves the way for many interesting
avenues of further research to fully benefit from a
decoupled architecture. Performance of hardware
allocators can further be improved with additional
techniques. As shown in this paper, for some appli-
cations the CPU stalls on mallocs. Techniques to
avoid such stalls are needed. The malloc requests
may be scheduled well ahead of their actual need,
thus overlapping the delay of actual allocation. This
is somewhat similar to the program demultiplexing
[14], where malloc calls were speculatively executed
using threads. Such techniques will not lead to sig-
nificant performance improvements in conventional
architectures (without a separate processing engine
dedicated to memory allocations), since instructions
comprising malloc functions will be executed utiliz-
ing the processing resources. Multithreaded archi-
tectures in general and SMT in particular, can
benefit from a decoupled allocator; SMT can issue
instructions from other threads while waiting mal-
loc for a thread [15].

Innovative memory management algorithms
aimed specifically for hardware implementation is
another potential avenue of research. Issues related
to dynamic frequency and voltage control to man-
age energy consumed by the primary execution unit
and the allocator can yield energy savings for gen-

Table 9
Performance due to predicted pre-allocation

Benchmark name Percentage of speedup (%)

1 cycles 100–10 cycles

164.gzip 0.035 0.031
197.parser 18.80 14.53
255.vortex 2.90 1.37
cfrac 27.64 11.71
espresso 14.06 6.40
bisort 12.76 12.57
treaded 52.67 49.22
voronoi 10.37 10.36

934 W. Li et al. / Journal of Systems Architecture 53 (2007) 927–936



Author's personal copy

eral-purpose applications. In addition to finding fas-
ter implementations or using the prediction tech-
nique shown in this paper, it may also be possible
to send stores to memory processor even before an
object allocation is complete. Thus stores can be
committed without delays. This is somewhat similar
to Load Squared architecture proposed by Hewlett
Packard [16]. It may also be possible to find new
cache organizations. The memory processor can
track memory usage and improve cache perfor-
mance of the allocated data.

Thus, we believe that a decoupled architecture as
proposed in this research can be the building block
for the next-generation general-purpose processors.

References

[1] E.D. Berger, B.G. Zorn, K.S. McKinley, Reconsidering
custom memory allocation, in: Proceedings of the Confer-
ence on Object-Oriented Programming Systems, Languages
and Applications, Seattle, USA, 2002, pp. 1–12.

[2] M. Rezaei, K.M. Kavi, Intelligent memory management
eliminates cache pollution due to memory management
functions, Journal of Systems Architecture 52 (1) (2006)
41–55.

[3] D. Patterson et al., The case for intelligent RAM: IRAM,
IEEE Micro (April) (1997) 34–44.

[4] K.M. Kavi, M. Rezaei, R. Cytron, An efficient memory
management technique that improves localities, in: Proceed-
ings of the 8th International Conference on Advanced
Computing and Communications (ADCOM 2000), Cochin,
India, December 14–16, 2000, pp. 87–94.

[5] Y. Feng, E.D. Berger, A locality-improving dynamic mem-
ory allocator, in: Proceedings of the 2005 workshop on
Memory System Performance (MSP 2005), Chicago, USA,
2005, pp. 68–77.

[6] V.H. Lai, S.M. Donahue, R.K. Cytron, Hardware optimi-
zations for storage allocation in real-time systems, Tech
Rept, #77, Department of Computer Science and Engineer-
ing, Washington University, St. Louis, Mo, 2003.

[7] S. Donahue, M. Hanpton, R. Cytron, M. Franklin, K. Kavi,
Hardware support for fast and bounded-time storage allo-
cation, in: Proceedings of the Second Workshop on Memory
Performance Issues (WMPI 2002), Anchorage, USA, 2002.

[8] J.M. Chang, E.F. Gehringer, A high-performance memory
allocator for object-oriented systems, IEEE Transactions on
Computers 45 (3) (1996) 357–366.

[9] H. Cam et al., A high performance hardware efficient
memory allocator technique and design, in: Proceedings of
the International Conference on Computer Design, Austin,
USA, 1999, pp. 274–276.

[10] M. Shalan, V. Mooney, A dynamic memory management
unit for embedded realtime system on a chip, in: Proceedings
of the International Conference on Compilers, Architecture
and Systhesis for Embedded Systems (CASES), November
2000, pp. 180–186.

[11] D. Burger, T.M. Austin, The SimpleScalar Tool Set, Version
2.0, Tech. Rep. CS-1342, University of Wisconsin-Madison,
June 1997.

[12] D. Lea, A Memory Allocator, <http://gee.cs.oswego.edu/dl/
html/malloc.html>.

[13] P.R. Wilson, M.S. Johnstone, M. Neely, D. Boles, Dynamic
storage allocation: a survey and critical review, Lecture
Notes in Computer Science 986 (1995).

[14] S. Balakrishnan, G. Sohi, Program Demultiplexing: Data-
flow based speculative parallelization of methods in sequen-
tial programs, in: Proceedings of the 33rd International
Symposium on Computer Architecture, June 2006, pp. 302–
313.

[15] D. Tullsen, et al., Simultaneous multithreading: maximizing
on-chip parallelism, in: Annual International Symposium on
Computer Architecture (ISCA-22), June 1995, pp. 392–403.

[16] S. Yehiay, J. Collardz, O. Temamy, Load square: adding
logic close to memory to reduce the latency of indirect loads
with high miss ratio, MEDEA Workshop, held in conjunc-
tion with PACT-2004.

Wentong Li received his MS degree in
Computer Science from the University of
North Texas. He is currently completing
his PhD in Computer Science at the
University of North Texas. He is
employed by Turn, Inc. as staff software
engineer. His research interests cover the
areas of computer architecture, machine
learning and information retrieval.

Mehran Rezai received BS and MS
degrees in Electrical Engineering from
the University of Alabama in Huntsville
and a PhD in Computer Science from the
University of North Texas. He worked
as a visiting faculty member at the Uni-
versity of Texas at Arlington. He is cur-
rently working as a software consultant
in Washington, DC area.

Krishna M. Kavi is currently a professor
and the Chair of Computer Science and
Engineering Department at the Univer-
sity of North Texas. Previously, he was
the Eminent Scholar Chair Professor of
Computer Engineering at the University
of Alabama in Huntsville from 1997 to
2001. He was on the faculty at the Uni-
versity of Texas at Arlington from 1982
to1997. He was a program manager at
the US National Science Foundation

from 1993 to 1995. He has extensive research record covering
intelligent memory systems, multithreaded and decoupled archi-

W. Li et al. / Journal of Systems Architecture 53 (2007) 927–936 935



Author's personal copy

tectures, dataflow model of computation, scheduling and load-
balancing.

Afrin Naz is currently completing her
PhD in Computer Science at the Uni-
versity of North Texas. She received her
MS in Computer Science from Mid-
western State University, Wichita Falls,
Texas. She is a member of UPSILON PI

EPSILON Chapter of Texas at Mid-
western State University. She is also the
recipient of multi-cultural scholastic
award of University of North Texas. She
will start her academic career as an

Assistant Professor at Drake University in Iowa, in Fall 2007.

Her research interest includes Computer Architecture, Compilers
and Embedded System designs.

Philip Sweany, associate professor in
UNTs Computer Science and Engineer-
ing Department, maintains a research
focus in both compiler optimization for
architectures exhibiting fine-grained
parallelism and application of compiler
optimization algorithms to automated
synthesis of net-centric systems.

936 W. Li et al. / Journal of Systems Architecture 53 (2007) 927–936


