
Improving Data Cache Performance with Integrated Use of
Split Caches, Victim Cache and Stream Buffers

Afrin Naz, Mehran Rezaei, Krishna Kavi and Philip Sweany
Department of Computer Science and Engineering

 The University of North Texas, Denton, Texas 76206-1366
Email: kavi@cse.unt.edu

Abstract

In our prior work we explored a cache organization

providing architectural support for distinguishing
between memory references that exhibit spatial and
temporal locality and mapping them to separate caches.

The work showed that using separate (data) caches
for indexed or stream data and scalar data items could
lead to substantial improvements in terms of cache
misses. In addition, such a separation allowed for the
design of caches that could be tailored to meet the
properties exhibited by different data items.

In this paper, we investigate the interaction between
three established methods, split cache, victim cache
and stream buffer. Since significant amounts of
compulsory and conflict misses are avoided, the size of
each cache (i.e., array and scalar), as well as the
combined cache capacity can be reduced. Our results
show that on average 55% reduction in miss rates over
the base configuration.
Key Words: Array Cache, Scalar Cache, Victim
Cache, Stream Buffer, Memory Access Time.

1. Introduction

In this paper, we investigate methods for improving
hit rates in the first level of memory hierarchy and
show that the inclusion of a victim cache and a stream
buffer together with partitioned cache architectures
provides an effective solution for alleviating existing
problems in cache designs and enhancing the effective
cache memory space for a given cache size and cost.

The success of cache memories has been explained
using the concept of locality (either temporal or
spatial) of reference [2]. Temporal locality implies that,
once a location is referenced, there is a high probability
that it will be referenced again soon, and less likely to
do so as time passes; spatial locality implies that when
a datum is accessed it is very likely that nearby data
will be accessed soon. Since cache stores recently used
segments of information, the property of locality
implies that needed information is also likely to be
found in the cache. Computer architects have proposed
smart cache control mechanisms and novel cache

architectures that can detect program access patterns
and can fine-tune some cache policies to improve
overall cache utilization and data locality. Among
these techniques are associative caches, prefetching
mechanisms [3], cache bypassing [4], victim caches
[6], column-associative caches [7], stream buffers [6],
split caches [8]-[19], and multi-port caches. In his
paper Jouppi [6] proposed both victim caches and
stream buffers. Victim caches are based on the fact that
reducing the cache misses due to line conflicts for data
exhibiting temporal locality is an effective way to
improve cache performance, whereas stream buffers
are oriented towards eliminating cold misses coming
from the portion of the code exhibiting spatial locality.
A split cache provides architectural support for
distinguishing between memory references that exhibit
spatial and temporal locality and mapping them to
separate caches in order to implement different
configurations exploiting different cache parameters
selectively and effectively. Each of these approaches
has its strengths and works well for the patterns it is
designed for. So far, split caches have primarily been
used independently of the other two approaches. To
date, no split cache has considered the existence of a
victim cache or a stream buffer and their interaction on
data references. Similarly, a victim cache or stream
buffer does not normally consider what optimizations
have already been incorporated by locality-enhancing
split cache techniques. In this work we use all these
three techniques together and study the interaction
among them. We propose an integrated scheme that
partitions the program into regions, each with its own
locality type. Our approach then sends the partitioned
memory references to appropriate caches and finally
selectively applies either a victim cache for program
regions exhibiting temporal locality or a stream buffer
for regions with spatial locality, to further enhance the
split cache organization.

The rest of the paper is organized as follows.
Section 2 discusses related issues and performance
metrics in more detail. Section 3 provides a survey and
analysis of related research. Section 4 describes the
experimental method used in our evaluation while,
section 5 presents the results. Section 6 provides a brief

synopsis of our work, drawing conclusions from our
experimental results.

2. Concepts

Since our approach combines three different
techniques in a single framework, we will first describe
how each of them concepts before describing our
integrated approach.

2.1. Split Cache and its functionality

Separation of cache is not a new idea. Modern
processors rely on split cache architectures, at least at
the first cache level, with separate instruction and data
caches. Conventional data caches imply no separation
based on the nature of the locality exhibited by
different data references, handling all memory
references in a uniform manner - whenever a reference
misses, a new block is brought into cache at the
expense of replacing another block. Since not all data
items exhibit both spatial and temporal localities, this
simple treatment to references makes the data cache
inefficient at adapting to the two types of localities.
Generally, caches exploit temporal locality by retaining
recently referenced data for a long time, and spatial
locality by fetching multiple neighboring words as a
cache block on a cache miss. If a data item exhibits no
temporal locality, bringing it into the cache is useless.
Likewise if no spatial locality is exhibited by data
items, bringing an entire cache block is needless. Thus
traditional treatment of cache misses causes
unnecessary movement of data among the levels of the
memory hierarchy, causing significant interference
between unrelated data inside the cache, leading to the
removal of potentially useful data, causing cache
pollution and unnecessary increases in miss ratio,
memory access time and memory bandwidth.

In order to solve these problems, several split cache
architectures have been proposed: Dual cache[9], [12],
Split Temporal/Spatial(STS) [10], Split Spatial/Non-
Spatial cache (SS/NS) [14], array and scalar cache[13],
HP-7200 Assist cache[8], Non-Temporal Streaming
(NTS) [11] and Minimax cache[18]. In our prior work
[1], we proposed a split cache architecture that grouped
memory accesses as scalar or array references
according to their inherent locality and each group was
subsequently mapped to a dedicated cache partition,
equipped with architectural constructs built to exploit
that particular locality type selectively and effectively.
The “array cache” was a direct mapped cache with
larger block sizes to exploit spatial localities more
aggressively by prefetching multiple neighboring small
blocks on a cache miss. Whereas the “scalar cache”

was a 2-way set associative cache with smaller block
sizes to exploit temporal locality. In this system, since
scalar references and streamed references no longer
negatively affected each other, cache interference,
thrashing and pollution problems were diminished,
delivering better performance. Not only both caches
would be designed more optimally according to their
specific needs, it would simplify some other general
issues and concerns in cache design, such as the
associativity, cache block size or cache capacity.

2.2. Victim Cache and its functionality

Victim cache was originally proposed by Jouppi[6]

as an approach to reduce the conflict misses of direct
mapped caches without affecting its fast access time.
Victim cache is a fully associative cache, whose size is
typically 4 to 16 cache lines, residing between a direct
mapped L1 cache and the next level of memory. On a
main cache miss, before going to the next level, the
victim cache is checked. If the address hits in the
victim cache the desired data is returned to the CPU
and also promoted to the main cache by replacing its
conflicting competitor. The data evicted from the main
cache is transferred to the victim cache. In case of a
miss in victim cache the next level of memory is
accessed and arriving data fills the line in main cache
while moving the current data to victim cache. In this
case the replaced entry in the victim cache is discarded
and, if dirty, written back to the next level of memory.

The design of a first level cache always involves
fundamental tradeoffs between miss rate and access
time. Direct mapped caches are simpler, easier to
design and require less silicon area than set associative
caches. The main disadvantage of a direct mapped
cache is the high conflict miss rate -- conflict misses
typically account for 40% of all direct-mapped cache
misses [6]. Conversely for caches with higher
associativity the main advantage is lower miss rate, but
they are more expensive and incur longer access times
on a hit. The goal of a computer architect is to
maximize performance while staying within cost and
power constraints. Addition of a victim cache can ease
this problem by reducing the conflict miss rate to the
same extent as a set associative cache, but at the same
time maintaining the critical hit access path of a direct
mapped cache. Victim cache temporarily holds data
evicted from the cache and, because of its full
associativity, it can simultaneously hold many blocks
that would conflict in direct mapped cache. If the
number of conflicting blocks are small enough to fit in
victim cache, both the miss rate to the next memory
level and the average access time will be improved due

to relatively low miss penalty for fetching from victim
cache.

2.3. Stream Buffer and its functionality

Complementing the cache with a small stream
buffer to exploit spatial localities was also first
proposed by Jouppi [6]. The stream buffer is a fully
associative, FIFO buffer with 4 or 5 entries designed to
support direct mapped cache through prefetching. A
miss will induce the prefetching of the missed block
along with successive blocks that will be stored in the
buffer rather than the cache. The intent is to use the
stream buffer to avoid cache pollution (premature
displacement of data). For data with spatial locality
prefetching is always a good solution. Although
increasing line size is the simplest way of prefetching,
line sizes cannot be made arbitrarily large without
increasing miss rates and greatly increasing the amount
of data to be transferred [6]. Other conventional
prefetching methods also have their deficiencies. The
stream buffer not only mitigates traditional problems
with larger cache lines and extensive prefetching, it is
more effective than other investigated prefetch
techniques [6]. The biggest problem with stream
buffers is that they need to be flushed at the detection
of any non-spatial data. Jouppi’s investigation did not
explore the stream buffer only for data with spatial
localities (such as streams). Rather the buffer was used
for all data items.

2.4. Functionality of the integrated approach

So can we design a combined approach that
provides even better performance than either applying
only one or applying each independently? Until now
there has not been significant research investigating the
interaction among these three optimizations (viz., split
caches, victim cache and stream buffer). We already
have shown that using separate (data) caches for
indexed or stream data and scalar data items can lead
to substantial improvements in terms of cache misses
[1]. Although victim caches and stream buffers can
reduce miss rates in L1 cache, the reduction achieved
depends on the configuration of the cache, as well as
the data reference types. Now we will see how a
separation of caches can be tailored to meet the
requirements of victim cache and stream buffer.

A conflict miss occurs when data with temporal
locality is referenced twice but is replaced by another
data item in between the references. Victim caching is
based on the principle of temporal locality and
provides dynamic associativity by allowing up to N+1
conflicting blocks, which belong to the same direct-

mapped set, to co-exist in caches simultaneously,
where N is the number of block entries in the victim
cache. In his original paper, Jouppi implemented a
victim cache for a unified data cache. As a result array
or stream elements remove scalar data from the victim
cache causing expensive victim cache pollution. In our
work, as the array references are removed from the
scalar cache, the victim cache not only has to deal with
fewer references but also without being polluted by
stream references. The reduced cost of using small
victim cache with direct mapped cache outweighs the
performance gains of having a cache with large
associativity.

On the other hand, a cold miss occurs when stream
or array data are traversed linearly by using the
elements only once or very few times during traversals.
Stream buffers exploit spatial locality and perform
prefetching for stream or array data. Jouppi’s analysis
[6] also included the stream buffer for a unified data
cache and every time scalar data is detected the whole
buffer needed to be flushed. In our study because we
are removing the contaminating scalar data the
performance can increase significantly.

We believe, that while transistors are plentiful in
current VLSI designs, it is useful to allocate more
resources to allow intelligent control over latency
reducing techniques and that it is better to implement
multiple smaller dedicated caches because these can be
accessed relatively quickly. In our framework, the
compiler will separate data references according to
their inherent locality type and send them to
appropriate cache. In this study the promising aspects
of victim cache in keeping conflicting blocks will be
used to satisfy the requirements of scalar cache and the
prefetching ability of stream buffer will be included
with the array cache to exploit its advantages for
streaming data. Compiler has a global view of the
program that is not visible to hardware, which on the
other hands gathers information during runtime. Our
objective is to combine runtime and compile time
information to take full advantage of both.

3. Related Work

According to our knowledge no work has been
reported presenting the integration of these three
approaches. For that reason in subsection 3.4 we
compared our work with the most closely related work
by Johnson et al.[4]

3.1. Split Cache

Valero et al. [9] have proposed a dual data cache,
which is composed of two modules, a temporal module

which is a fully associative buffer and spatial module,
which is a direct mapped cache targeted to exploit
spatial locality. At the compile time memory
instructions are tagged as bypass, spatial, or temporal.

In the STS (Split Temporal/Spatial) cache proposed
by Milutinovic et al. [10] the temporal part is
organized as a two level hierarchy with one word block
size, whereas the spatial part is one-level with four 32-
bit words and a hardware implemented prefetching
mechanism. In a later study Milutinovic et al. [14]
proposed a new split cache design, called the Split
Spatial/Non-Spatial cache (SS/NS), which used a flag
based method for detecting different types of locality.

The NTS (Non-Temporal Streaming) cache
proposed by Rivers and Davidson [11] dynamically
detects temporal (T) and non-temporal (NT) data and
cache them separately. The NTS cache system includes
a non-temporal detection unit (NTDU) to monitor the
reuse behavior of the blocks. Lee et al. [15] have
proposed a split cache system called STAS cache. In
this system on every memory access, both modules are
accessed simultaneously. Later they proposed an SMI
cache [16] that is an extended version of STAS with a
prefetching unit. There have been more studies of split
cache which include array/scalar cache [13], HP-7200
Assist cache [8].

In the arena of embedded processors, static or
dynamic cache partitioning are even more popular.
Most prominent works include Minimax cache [18]
and Intel’s StrongARM SA-1110 [17]. Ranganathan et
al. [19] and many others have proposed reconfigurable
caches for embedded systems with dynamic cache
partitioning.

3.2. Victim Cache

Albera and Bahar [20] combined software code
placement and associative-buffer solutions for high
performance processors and showed that the buffer can
improve performance even more after code layout
optimization is applied than when it is used without the
code optimization. In a later study Bahr et al compared
the use of victim caches to more traditional techniques
and showed that use of a victim cache is usually a
better choice for both power and performance [21].

Espasa and Valero [22] considered the usefulness of
adding a victim cache next to the register level of a
vector processor and showed that it can provide
speedups by allowing a good tolerance of large
memory latencies.

Hormdee et al proposed an architecture of a self-
timed victim cache with a forwarding mechanism
suitable for use within an asynchronous environment
[23].

While the average performance and energy
improvements obtainable using a victim cache are well
known for general purpose computers, in the arena of
embedded systems where power and time savings are
extremely important, the extra one cycle needed to
check victim cache may become wasteful and
dramatically degrade performance if victim cache hit
rate is low. Zhang and Vahid proposed that adding a
victim cache as a configurable parameter will be
imperative for embedded system designers to fully take
advantage of victim cache based on application’s
specific requirements [24].

Except for the addition of the non-swapping option,
no other extension to Jouppi’s original victim cache [6]
was implemented by any of these above mentioned
studies. Bahar et al [21] tried to add some extra flavor
in their “penalty buffer” but did not gain much
improvement. Only one group, Stiliadis et al had
proposed an improvement of victim caching called
“Selective Victim Caching” [25]. In this method a
prediction scheme based on each block’s past history
of utilization is used to selectively place a block either
in the main cache or victim cache on a cache miss in
either cache and to decide whether to perform swap or
not in the case of victim hit.

3.3. Stream Buffer

The most extensive and prominent work with

stream buffers is that of McKee et al. [26]. They
designed an SMC (stream memory controller), which
is a combination of a small buffer and an intelligent
scheduling unit for supporting regular cache.
Palacharla and Kessler [27] proposed the use of
multiple stream buffers to replace big secondary cache.

3.4. Combination of Victim Cache, Stream
Buffer and Cache separation techniques

To date, no study has combined the implementation
of victim cache and stream buffer with separated data
cache approach. Johnson et al [4] proposed a method
where a single 4–way set associative buffer is used to
serve the function of both victim cache and stream
buffer on groups of data that have been differentiated
based upon the reuse behavior. While we also regroup
data by locality analysis and implement both victim
cache and stream buffer, our work differs with [4] in
several key aspects.

Johnson et al [4] presented a method to improve the
efficiency of cache by bypassing data that is expected
to have little reuse in cache and allowing more
frequently accessed data to remain cached longer. The
bypassing choices are made by a Memory Address

Table (MAT), which analyzes the usage patterns of the
memory locations accessed. In order to characterize
memory locations they introduce the notion of macro-
block, which is a group of statically defined blocks of
memory with uniform size (1k bytes). They used a
direct mapped 16k L1 data cache and 256k L2 data
cache with fully associative buffers of 8 and 256
entries respectively, which hold bypassing data and are
accessed in the same manner as a victim cache. Since
fetching the entire cache block for bypassed data with
little spatial locality will cause cache pollution and
extra traffic, they used small lines (equal to the element
size) for the buffers and optionally fill in consecutive
blocks when spatial locality is detected. As we can see
they are using a single buffer to serve the purpose of
both a victim cache (for scalar data) and a prefetch
buffer (for stream data). In a later study [5] they
extended their scheme by adding an extra structure
SLDT (Spatial Locality Detection Table) and extra
counter for each MAT entry to detect spatial locality so
that the system can adapt to varying spatial locality by
dynamically adjusting the amount of data fetched on a
cache miss.

The first difference between their work and ours is
that rather than using locality types they have used
reuse behavior of data as a metric for data separation.
Since the MAT keeps the reuse pattern for all data in
the whole program, at some point during execution it is
possible for an array element to have higher reuse
count than scalar data. In that case the MAT scheme
will bypass the data which may have otherwise had a
few hits before being displaced from the cache. Hence
more than one additional miss will be incurred by not
caching that data, whereas only one miss is removed
by not displacing the more frequently accessed data.
Secondly after identifying data as scalar/array we
cache both types in separate caches whereas they used
bypassing for data with less reuse history. The third
and the most significant difference between their work
and ours are the number and types of architectural
constructs. We not only use two separate caches for
two different data types, we also use two separate
structures as victim cache and stream buffer to tune the
amount of data cached and fetched. This allows us to
fully exploit the functionality of a victim cache to
reduce conflict misses of scalar data by holding data
longer and the usability of stream buffer to reduce the
cold miss of array data by prefetching. In their method
using 8 lines of buffer as both victim cache and
prefetch buffer will negatively affect each’s
performance.

4. Simulations

The cache architecture proposed in this paper has
been evaluated for the following SPECfp2000
benchmarks, art, ammp, mesa, equake, fma3d, mgrid,
applu and sixtrack [29]. The number of instructions
executed by each application varied from 1 billion to
129 billions. We truncated some of the benchmarks to
reduce the number of references. The descriptions of
the benchmarks are given in Table 1. We used trace
driven simulation as our evaluation methodology. The
executables are instrumented using ATOM
instrumentation and analysis system [30]. In an actual
implementation of split caches, compile time analyses
can be used to tag stream data so that they can be
directed to array cache, separate from scalar cache.

Table 1: Descriptions of benchmarks used in the

experiment
Benchmark
name

Description Name
in figure

179.art ImageRecognition/Neural networks ar
188.ammp Computational Chemistry am
183.equake SeismicWavePropagation Simulation eq
177.mesa 3-D Graphics Library me
172.mgrid Multi-grid Solver: 3D Potential Field mg
191.fma3d Finite-element Crash Simulation fm
200.sixtrack NuclearPhysics Accelerator Design sx
173.applu ParabolicPartialDifferentialEquation ap

In an attempt to evaluate the optimal configuration
of the integrated approach, a variety cache sizes, block
sizes, associativity and replacement methods were
examined for each of array, scalar, victim cache and
stream buffer. Table 2 presents the optimum
configuration for the memory hierarchy that has been
implemented in our study.

Table 2. Configuration of Memory hierarchy

Scalar cache configuration 4k, Directmapped,64bytes block
Access time of Scalar cache 1 cycle
Number of lines in victim cache 8 lines, non swapping
Victim cache associativity Fully associative
Replacement Policy LRU
Victim cache block size 64-bytes
Access time of Victim cache 1 cycle
Array cache configuration 4k, Directmapped, 64bytes block
Access time of Array cache 1 cycle
Number of stream buffer 4
Number of lines in stream buffer 10
Stream buffer block size 64 bytes
Access time of stream buffer 1 cycle
L2 cache configuration 256k, Directmap,64bytes block
Access time of L2 cache 10 cycle

5. Results

The next three subsections present the selection of
cache organizations in the same order as these
parameters were described in sections 2 and 3. We
compare the effective miss rate of proposed cache
against that of conventional unified cache. The results
support our view that a complete separation of array
and scalar data items with victim cache and stream
buffer can be a key to boosting cache performance.

5.1. Results with Split Caches

In our previous work [1], we have shown that the
combination of different block sizes and associativities
together with partitioned cache architectures reduces
compulsory and conflict misses in significant amounts
and allows the combined cache capacity to be reduced.
Figure 1 shows results of our previous work along with
some additional benchmarks. In that work we
simulated a partitioned 4k scalar cache while are
streams mapped to a 2k array cache. This arrangement
proved more efficient than a 16k unified data cache.

5.2. Results with Victim Cache

Figures 2 and 3 compare the use of victim cache and
higher associativity in decreasing cache misses and
access time respectively. Figure 2 shows that using a
victim cache with a direct mapped scalar cache led to
miss rates similar to that of a 2-way set associative
cache. Figure 3 shows that the victim cache allowed a
significant reduction in access times for scalar data
items. Given that access time is a better metric of cache
performance than miss rate, our experiments show the
significant benefit available with a victim cache.

5.3. Results with Stream Buffer

To evaluate the benefit of stream buffers with the array

cache, we used multiple (4) stream buffers of 10
elements, following Jouppi [6]. The cache miss rates
and access time for each benchmark are plotted in
figure 4 and 5 respectively.

5.4. Results of Combining Victim Cache,
Stream Buffer and Split Caches

After the evaluation of optimal configurations for
both victim cache and stream buffer, weighted
effective miss rate for array and scalar caches are
compared against the miss rate of unified 16k data
cache. In order to find the effective miss rate we have
used the following formula,

Fig. 1. Reduction in effective miss rate with array and scalar
caches

 Fig. 4. Reduction in miss rate of array cache with stream buffer

Fig. 2. Comparison of miss rate of 2-way set associative scalar

cache with direct mapped scalar cache and victim cache

Fig. 3. Percentage reduction in access time by switching from 2-

way set associative to direct mapped scalar cache with victim
cache

Effective miss rate = Array miss rate * (Number of Array
references/Number of total references) + Scalar miss rate * (Number
of Scalar references/Number of total references)

The results are shown in figure 6. The integrated
approach demonstrates uniform superiority over the
conventional unified data cache design across all of the
benchmarks. For 4k scalar cache and 4k array cache on
average 55% improvement is achieved over a 16k
unified scalar cache for the benchmark set.

6. Conclusions

The widening gap between processor and memory
speeds makes data locality optimization a very
important issue in modern cache systems. Computer
architects focus on optimizing data cache locality using
intelligent cache management mechanisms. In this
paper, we investigated the interaction between three
established methods, split cache, victim cache and
stream buffer and proposed a strategy to optimize
cache locality for scientific applications. Simulation
results showed that proposed technique improved miss
rates on average 55% with respect to the base
configuration, even while using smaller combine cache
foot-print. The proposed approach demonstrated how

three inherently different approaches could be
combined and made to work together by providing
further achievement in data locality optimization arena.

7. References

[1] A. Naz, K.M. Kavi, P.H. Sweany and M. Rezaei.

"A study of separate array and scalar caches"
Proceedings of the 18th International Symposium
on High Performance Computing Systems and
Applications (HPCS 2004), Winnipeg, Manitoba,
Canada, May 16-19, 2004, pp 157-164

[2] A. J. Smith, Cache Memories, ACM Computing
Surveys 14 (1982) 473-530.

[3] J. L. Baer and T. F. Chen, “An effective on –chip
preloading scheme to reduce data access penalty.
”In Proceedings of the Supercomputing’91, pp.
176-186, 1991

[4] T. L. Johnson and W. W. Hwu. “Run-time adaptive
cache hierarchy management via reference
analysis”. In Proc. the 24th International
Symposium on Computer Architecture,June 2–4,
1997.

[5] T. L. Johnson, M. C. Merten, and W. W. Hwu
“Run-time spatial locality detection and
optimization”. In Proc. the 30th International
Symposium on Microarchitecture,December 1–3,
1997.

[6] N. P. Jouppi, “Improving Direct-Mapped Cache
Performance by the Addition of a Small Fully
Associative Cache and Prefetch Buffers,” In
proceedings of the 17th ISCA, May 1990, pp. 364-
373.

[7] A. Agarwal and S. D. Pudar. “Column–associative
caches: a technique for reducing the miss rate of
direct–mapped caches”. In Proc. 20th Annual
International Symposiumon Computer

[8] G. Kurpanek, K. Chan, J. Zheng, E. DeLano and
W. Bryg, ”PA7200: A PA-RISC Processor with
Integrated High Performance MP Bus Interface”,
COMPCON Digest of Papers, Feb 1994, pp. 375-
382.

[9] C. Gonzalez, A. Aliagas, and M. Valero, “Data
Cache with Multiple Caching Strategies Tuned to
different Types of Locality,” In proceedings of
International Conference on Supercomputing '95,
July 1995, pp. 338-347.

[10] V. Milutinovic, M. Tomasevic, B. Markovic, and
M. Tremblay, “The Split Temporal/Spatial Cache:
Initial Performance Analysis,” SCIzzL-5, Mar.
1996.

[11] J. A. Rivers and E. S. Davidson, “Reducing
Conflicts in Direct-Mapped Caches with a
Temporality based Design, Proc. 1996

Fig. 6. Reduction in effective miss rate with integrated approach

Fig. 5. Percentage reduction in access time by addition
of stream buffer

International Conference on Parallel Processing,
August 1996.

[12] F. J. Sanchez, A. Gonzalez, and M. Valero,
“Software Management of Selective and Dual
Data Caches”, IEEE TCCA NEWSLETTERS,
March 97, pp. 3-10.

 [13] M. Tomasko, S. Hadjiyiannis, and W. A. Najjar,
“Experimental Evaluation of Array Caches”, IEEE
TCCA Newslatters, March 97, pp. 11-16.

 [14] V. Milutinovic, M. Prvulovic, D. Marinov, Z.
Dimitrijevic, “The Split Spatial/Non-Spatial
Cache:A Performance and Complexity
Evaluation”, in Newsletter of Technical Committee
on Computer Architecture, IEEE Computer
Society, July 1999.

[15] J. H. Lee, J. S. Lee, and S. D. Kim, “A new cache
architecture based on temporal and spatial
locality,” Journal of Systems Architecture, Vol.
46, pp. 1451-1467, Sep. 2000.

[16] J. H. Lee, G. H. Park, K. W. Lee, T. D. Han, and
S. D. Kim, “A Power Efficient Cache Structure for
Embedded Processors Based on the Dual Cache
Structure,” In proceedings of the ACM
LCTES’2000, June 2000.

[17] Intel StrongARM SA-1110 Microprocessor Brief
Datasheet, April 2000.

[18] O. S. Unsal, I. Koren, C. M. Krishna, C. A.
Moritz, “The Minimax Cache: An Energy-
Efficient Framework for Media Processors,” 8th
International Symposium on High-Performance
Computer Architecture, HPCA8, Cambridge, MA,
February 2002, pp. 131-140.

[19] P. Ranganathan, S. V. Adve, and N. P. Jouppi,
“Reconfigurable caches and their application to
Media processing,” Proceedings of the 27th
International symposium on Computer
Architecture, June 2000, pp. 214-224.

 [20] G. Albera, R. I. Bahar, “Power/Performance
Advantages of a Victim Buffer in High-
Performance Processors”, IEEE Volta
International Workshop on Low Power Design,
Como, Italy, March 1999.

[21] R. I. Bahar, D. Grunwald, B. Calder,”A
Comparison of software code reordering and
victim buffers”,ACM SIGARCH Computer
Architecture News, March 1999.

[22]R. Espasa and M. Valero. “A Victim Cache for
Vector Registers”. ICS-11. ACM “International
Conference on Supercomputing”. Vienna, July
1997

[23]D.Hormdee, J.D. Garside, S.B. Furber, “An
Asynchronous Victim Cache”, Proceedings of
DSD'2002 Dortmund, September 2002

[24] C. Zhang and F. Vahid, “Using a Victim Buffer in
an Application-Specific Memory Hierarchy”,
Design Automation and Test in Europe
Conference (DATE), February 2004, pp. 220-225.

[25] Dimitrios Stiliadis. “Selective victim caching : A
method to improve the performance of direct-
mapped caches”, In Proceedings of the 27th
Hawaii International Conference on System
Sciences, Los Alamitos, California, 1994. IEEE,
Computer Society Press.

[26] S. A. McKee, R. H. Klenke, K. L. Wright, W. A.
Wulf, M. H. Salinas, J. H. Aylor, A. P. Barson,
“Smarter Memory: Improving Bandwidth for
Streamed References,” in IEEE Computer. July
1998. p. 54-63.

 [27]S.Palacharla and R. E Kessler. “Evaluating Stream
Buffers as a Secondary Cache Replacement,” In
Proceedings of the 21th International Symposium
on Computer Architecture, Chicago, IL, Apr.
1994, pp. 24--33.

[28] J. L. Hennessy and D. A. Patterson, Computer
Architecture A Quantitative Approach, Morgan
Kaufmann Publishers, Third Edition 2003, pp 423-
430.

[29] L. Henning. "SPEC CPU2000: Measuring CPU
Performance in the New Millennium", IEEE
Computer, 33(7), pp. 28-35, July 2000.

[30] A. Eustance and A. Srivastava. "ATOM: A
flexible interface for building high performance
program analysis tools", Western Research
Laboratory, TN-44, 1994.

Acknowledgement. This work is supported in part by a

NSF grant ITR-0081214 (subcontract from
Washington University in St. Louis).

