
A Study of Reconfigurable Split Data Caches and Instruction Caches

Afrin Naz Krishna Kavi Philip Sweany Wentong Li
 afrin@cs.unt.edu kavi@cse.unt.edu Philip@cse.unt.edu wl@cs.unt.edu

Department of Computer Science and Engineering
 P.O. Box 311366, University of North Texas, Denton, Texas 76203

Abstract

In this paper we show that cache memories for
embedded applications can be designed to both increase
performance and reduce energy consumed. We show that
using separate (data) caches for indexed or stream data
and scalar data items can lead to substantial
improvements in terms of cache misses. The sizes of the
various cache structure should be customized to meet
applications’ needs. We show that reconfigurable split
data caches can be designed to meet wide-ranging
embedded applications’ performance, energy and silicon
area budgets. The optimal cache organizations can lead
to on average 62% and 49% reduction in the overall
cache size, 37% and 21% reduction in cache access time
and 47% and 52% reduction in power consumption for
instruction and data cache respectively when compared
to an 8k byte instruction and an 8k byte unified data
cache for media benchmarks from MiBench suite.

Keywords: Embedded Systems, Cache memories, Split
data cache, Victim Cache, Reconfigurability.

1 Introduction

Studies have found that the on-chip cache is

responsible for 50% of an embedded processor’s total
power dissipation [3, 5]. For that reason we feel that it is
worthwhile investigating new reconfigurable cache
organizations to address both performance and the power
requirements of embedded applications. Our experiments
show that instruction cache with prefetching and split
data caches (scalar data cache augmented with victim
cache, and a separate array data cache) are effective in
embedded systems when used in conjunction with
dynamic reconfigurability of cache components.

Our goal is to reduce (silicon) area, access time,
and dynamic power consumed by cache memories while
retaining performance gains. In our design, we first
address the problem of improving cache performance in
embedded systems through the use of reconfigurability in
separate array and scalar data caches. Then we extend our
architecture by augmenting the scalar cache with a victim
cache [14]. Victim caches are based on the fact that
reducing cache misses due to line conflicts for data
exhibiting temporal locality is an effective way of

improving cache performance, without increasing the
overall cache associativity. Inspired by the reduction in
silicon areas, and power consumptions resulting from our
split caches we then implemented reconfigurability with
our instruction cache, which is augmented by a small
prefetch buffer. The prefetch buffer will utilize the silicon
area savings achieved in our data cache designs. By
setting a few bits in a configuration register, the cache can
be configured by software for optimum sizes for each of
our four structures (array cache, scalar cache, instruction
cache and prefetch buffer) and use the rest of the unused
area for other processor activities. The cache system can
also be configured to shutdown certain regions in order to
effectively reduce energy consumption. For both cases,
the reconfiguration hardware leads to only a small
overhead in terms of time, power, silicon area and
hardware complexity. In this paper, we provide the details
of our configurable cache. Our results show excellent
reductions in both memory size and memory access time,
translating into reduced power consumption. Our cache
architecture reduces the cache area by as much as 85%
and 78%, cache access time by as much as 72% and 36%,
and energy consumption by as much as 75% and 67% for
instruction and data caches respectively (when compared
with an 8k byte instruction and 8k byte unified data
caches). These reductions can be profound when working
with small L-1 caches often found in embedded systems.
We believe there are three reasons behind the success of
our cache architecture. First the separation of array and
scalar data items eliminates mutual interference caused by
these two types of data (and reduces conflict misses). The
second reason is the greater reconfigurable design space
afforded by our cache structures which allows more
chances of improvement. Finally adding a small prefetch
buffer to the instruction cache allows us to reduce cold
misses in instruction access. Even with the additional
power consumed by the prefetching for instruction cache,
our studies show significant reductions in total energy
consumed by our caches.

The space savings resulting from our cache
structures may be used for many architectural features
such as instruction reuse buffers and branch prediction
buffers to further improve the performance of embedded
applications. In this paper we survey possible
optimization techniques to be implemented in our saved
area.

235

The rest of the paper is organized as follows.
Section 2 provides a survey of related work, while section
3 describes interactions between different cache
parameters in embedded systems. In section 4, we
describe the architectural design of our reconfigurable
cache. In section 5 we evaluate our reconfigurable cache
and in section 6 we provide a survey of different
optimization techniques. Finally we present our
conclusions in section 7.

2 Previous Work

Ranganathan et. al [17] proposed a

reconfigurable unified data cache architecture for general
purpose processors. They proposed dividing data cache
into different partitions that can be used for different
processor activities. Ranganathan et. al. did not provide
an analysis of silicon area involved in the reconfigurable
cache, but explored different design alternatives, focusing
on one option of reconfiguring caches for “instruction
reuse”. Albonesi et al [9] proposed “selective cache
ways” to selectively disable portions of unified data
cache, trading off performance with power. Neither of
these analyzed the impact of reconfigurabilty on
instruction cache. Work by Vahid et. al. [4] is closely
related to our research, as they evaluate reconfigurable
instruction and unified data caches for embedded
applications. Unlike this research, we do not see
associativity as an important reconfigurable design
parameter. This is because, both our array and scalar data
caches are designed as direct mapped caches, and we use
a victim cache to effectively provide higher associativity
for scalar data. Also inclusion of a very small instruction
buffer allows us to remove the cold misses in our direct
mapped instruction cache.

The main difference of our work when compared
with others is, in addition to showing performance gains
and power reductions, we also analyze silicon area
savings obtained from our caches. The most significant
aspect of our work is using separate data cache with
reconfigurability. Previous research did not consider
reconfigurable caches within the context of separate data
caches [4, 9, 13, 15, 17].

3 Influence of different Parameters

In this section we will discuss the impact of

power and associativity on our proposed cache system.

3.1 Dynamic power consumption

In CMOS circuits the major source of power
consumption is dynamic power. Dynamic power
dissipation is due to logic switching current and the

charging and discharging of the load capacitances. In our
power consumption evaluation we include energy
consumed due to cache misses and off-chip accesses. Our
model uses the following general equations to compute
the dynamic power consumption of a cache.

power = Hit * power_hit + Miss * power_miss
power_miss = OPC + PCW + FTM

We obtained values for hits and misses for our
array and scalar caches by executing the selected
benchmarks on the Simplescalar simulator [6]. Different
cache structures have different power_hit values based on
the cache type, size and hit type of each access. The PCW
is the power consumed to write an entire line to the cache.
OPC is the power needed for off-chip access and is
calculated as 0.5 * Vdd2 * (0.5 *Wdata + Waddr)) * 20pF
[11, 18], where Wdata and Waddr are the number of bits for
both the data sent/returned and the address sent to the
next level of memory on a miss. The last term is the load
capacitance for off-chip destinations. For any miss the
overhead for searching in cache is included in FTM (First
Time Miss).

3.2 Influence of associativity

Higher associativity in both data and instruction

caches is identified as the most important reconfigurable
parameter by Vahid et al. [4]. In unified data caches, the
associativity of the cache plays a significant part in the
overall performance/power trade-offs. However, when the
data cache is split (as in our case into array and scalar
caches), we found that associativity is no longer a
significant reconfigurable parameter. At L-1 cache (which
is our primary concern), it is important to maintain a
balance between miss rates and access times. In our
design, direct mapped caches provide for such a balance,
as conflicts between different classes of data (viz., arrays
and scalars) are eliminated by our split cache
organizations. Additionally, since we provide for a small
victim cache with the direct mapped scalar cache, the
miss rates are further reduced, without having to resort to
higher associativities. For instruction cache, we believe
that cold misses are more problematic to performance
than conflict misses, and we use a small pre-fetch buffer
to reduce cold misses.

4 Architectural design of proposed cache

Figure 1 shows our proposed reconfigurable split

cache architecture, with array and scalar data caches,
victim cache with scalar data cache and the instruction
cache augmented by a small prefetching buffer. In order
to speedup access, current implementations partition
caches into multiple sub-arrays [7, 8]. For example, the

236

SA-110 embedded microprocessor [7] uses 32-way
associative 16KB L1 instruction and Data caches, each of
which is divided into 16 fully associative sub-arrays.
With this partitioning in place, our reconfigurable caches
can easily be implemented if there are at least as many
sub-arrays as the maximum number of partitions (because
for a reconfigurable cache different partitions must be
implemented in physically different sub-arrays indexed
by different addresses). Figure 2 shows the structure of a
cache using SRAM technology. This figure also includes
the sections where additional multiplexors are added to
implement reconfigurability (referred by shaded
numbered blocks) [17].

 CPU

victim scalar array instruction prefetch

L2 cache

memory

Figure 1 Reconfigurable split cache organization

 Address(Index)
 [1:NP]

 Bit Lines Bit Lines

 Word Lines Word Lines

 Tag Array Data Array

1

 Column Mux Decoder Column Mux
 Sense Amp Sense Amp

 Address
 (tag)[1:NP]

 Mux Drivers [1:NP] Output Drivers [1:NP] Data [1:NP]

 Output Hit/Miss
 Drivers [1:NP]

Figure 2 Additional logic for Reconfigurable cache [17]

In order to implement reconfigurable caches,
only a small amount of additional logic is required.
Additional wiring is also necessary from the cache to the
processor for directing data to/from the various partitions.
The most challenging part in designing a reconfigurable
cache is the implementation of a mechanism to divide the
cache into different (variable sized) partitions and
designing an addressing scheme that can address any
partition. Ranganathan et. al. [17] have already proposed
two partitioning and addressing schemes: “Associativity
based partitioning” and “Overlapped wide-tag
partitioning”. In our design we use “Overlapped wide-tag
partitioning” scheme. In this scheme, the key challenge is
to devise a mechanism so that the size of the array tag can
be dynamically changed with the size of partitions (since
the number of bits in a tag and index fields of the address
will vary based on the size of the partition). We restrict

the size of each partition to a power of 2 and support a
limited number of possible configurations (usually two or
three).

The additional logic will add to silicon area,
access time and power consumed. Ranganathan et. al.
[17] have studied the impact of reconfigurable cache
organizations on cache access times and showed that for a
small number of partitions, reconfigurable caches
increase the cache access time by less than 5%. In this
paper we have used the CACTI timing model [18] to
obtain values for these overheads of our reconfigurability.

Other major issues in designing reconfigurable
split caches include determining how to find the best
configuration and maintaining data consistency. A
reconfigurable cache can be used in different ways. The
best configuration for an application can be determined
by extensive simulations (or actual executions). For

Comparators 2

4

3

5 5

237

detailed information about maintaining data consistency
see [17].

5 Evaluation of Reconfigurable Split Cache

In this section we present the results from our

evaluation, comparing our cache organization with the
base cache architecture consisting of 8k byte L1
instruction cache, 8k byte L1 data cache and a 32 k byte
unified L2 cache.

5.1 Methodology

We use benchmark programs from the MiBench

suite[12]. The descriptions of the benchmarks used in our
studies are listed in Table 1.

Table 1: Descriptions of benchmarks

Benchmark Description %
load/store

Name in
fig

bit counts Test bit manipulation 11 bc
qsort Computational

Chemistry
52 qs

dijkstra Shortest path
problem

34.8 dj

blowfish Encription/decription 29 bf
sha Secure Hash

Algorithm
19 sh

rijndael Encryption Standard 34 ri
String

search
Search mechanism 25 ss

adpcm PCM standard 7 ad
CRC32 Redundency check 36 cr

fft Fast Fourier
Transform

23 ff

Our experimental environment builds on the

SimpleScalar (version 3.0d) simulation tool set [6]
modeling an out-of-order speculative processor with a
two-level cache hierarchy. We rely on default parameters
defined by SimpleScalar. The base cache system used to
compare our architecture uses an 8k byte L1 instruction
cache, an 8k byte L1 data cache and a 32 k byte unified
L2 cache.

5.2 Results

In Figure 3 we show the reduction in miss rates

with increasing cache size for both instruction (a) and
data (b) caches. For several benchmarks (“ad”, “cr”, “bc”
in Figure 3(a) and “bc” in Figure 3(b)), the miss rates are
too small (comparing to other benchmarks) to be visible
in the figure. The three series in Figure 4 represent
percentage reductions in power, area and access time for

instruction and data caches respectively. In this figure we
also show the average power, area and cache access time
across all

(a)

0

0.05

0.1

0.15

0.2

bc qs dj bf sh ri ss ad cr ff

M
is

s
ra

te

1k

2k

4k

8k

(b)

0

0.1

0.2

0.3

0.4

bc qs dj bf sh ri ss ad cr ff

M
is

s
ra

te

1k
2k
4k
8k

Figure 3: Instruction (a) and data (b) cache miss rates

for increasing cache size

(a)

0

50

100

bc qs dj bf sh ri ss ad cr f f avg

pe
rc

en
ta

ge pow er

area

time

(b)

0

50

100

bc qs dj bf sh ri ss ad cr f f avg

pe
rc

en
ta

ge pow er

area

time

Figure 4: Percentage reduction of power, area and

cycle for instruction (a) and data (b) caches

238

Table 2: Cache configurations yielding lowest power, area and cache access time
Benchmark Instruction cache Prefetch buffer Array cache Scalar cache
bit counts 256 bytes 256 bytes 512 bytes 512 bytes

qsort 256 bytes 512 bytes 1k 4k
dijkstra 1k 2k 512 bytes 4k
blowfish 1k 1k 512 bytes 4k

sha 256 bytes 512 bytes 512 bytes 1k
rijndael 512 bytes 512 bytes 1k 4k

string search 256 bytes No prefetching 512 bytes 1k
adpcm 256 bytes 256 bytes 1k 512 bytes
CRC32 256 bytes 256 bytes 512 bytes 512 bytes

FFT 1k 1k 1k 4k

the benchmarks used in our experiments. As can be seen,
for instruction cache, on average we achieve 47%
reduction in power, 62% in area and 37% in access
time.Here it should be mentioned that for benchmark “ss”
the best configuration was 8k. Hence we did not achieve
any reduction in power or area. For data caches, on
average we show more than 50% reduction in both power
and area. Each of the benchmarks also provides reduction
in cache access time. For each benchmark we generated
data and selected the best configuration in optimizing
power, area and access times. In Table 2 we provide the
optimum configurations for each benchmark.

6 Utilization of additional area

When provided with larger caches, we can either

disable unused sub-arrays of cache to save energy or use
the sub-arrays for purposes other than traditional caching,
so that execution performance can be further improved.
We propose our reconfigurable cache to enable its
dynamic partitions to be assigned to other processor
activities. Techniques such as hardware prefetching,
instruction reuse, value prediction and branch prediction
have been used effectively in desktop applications.
However, these techniques require additional space for
implementing look-up tables or buffers and thus these
techniques are viewed as inappropriate for embedded
systems [5]. Since we show reductions in cache sizes in
our designs (while not sacrificing performance or
increasing power consumptions), these savings may be
used to implement look-up tables or buffers to implement
elaborate branch prediction or instruction reuse ideas.

6.1 Hardware and software Prefetching

Prefetching or exploiting the overlap of

processor computations with data access has proven to be
effective in tolerating long memory latencies [2, 10].
Prefetching can be either hardware [10] or software based
[2]. In our reconfigurable cache we can use separate

partitions for prefetched data and avoid cache pollution.
The prefetching areas can be implemented in cache arrays
with minor hardware and software changes.

6.2 Hardware optimization techniques with look-
 up table

Modern processors utilize speculative execution

of instruction based on branch prediction, instruction
reuse and function reuse technique to improve
performance [1, 16]. It has been found that many
instructions and functions are repeatedly executed with
the same inputs, producing same outputs [1]. Similarly for
branch instructions, branch decisions are correlated and
can be predicted. This observation can be exploited to
reduce the number of instructions/functions executed
dynamically as follows: by buffering the previous result
of the instruction/function, future dynamic instances of
the same static instruction (or function) can use the result
by establishing that the input operands in both cases are
the same [1]. For all of these optimization techniques as
the microprocessor tries to make the prediction based on a
record of what this instruction/function has done
previously, having a larger look up table is very helpful
[19]. Unfortunately none of these optimization techniques
have been studied in detail for embedded applications.
We anticipate that since we can save the space needed for
cache memories using our cache structures (on average
62% for instruction cache and 49% for data cache), the
saved space can be used to build needed look-up tables to
implement instruction and function reuse.

7 Conclusions

In this paper we introduced a cache architecture

for embedded microprocessor platforms. Our design uses
reconfigurability coupled with split data caches (separate
array and scalar data caches), containing a very small
victim cache to reduce (silicon) area and dynamic power

239

consumed by cache memories while retaining
performance gains. To further improve the proposed
cache organization, we augment the instruction cache
with a small prefetch buffer. Our cache architecture
reduces the instruction and data cache size by as much as
85% (average 62%) and 78% (average 49%), cache
access times by as much as 72% (average 37%) and 36%
(average 21%), and energy consumption by as much as
75% (average 47%) and 67% (average 52%) respectively
when compared with an 8KB L-1 instruction cache and
an 8KB L-1 unified data cache with a 32KB level-2 cache
(for both data and instructions).

Our design enables the cache to be divided into
multiple partitions some of which can be used for other
processor’s activities (such as hardware prefetching,
instruction reuse, branch predictions) or the cache system
can also be configured to shutdown certain regions. Since
our reconfigurable approach leverages the sub-array
partitioning that is already present in modern caches, only
minor changes to cache implementations are required.
The reconfiguration only requires a small overhead in
terms of silicon area, power and execution times.

In future we will explore how unused cache
portions (obtained by our proposed method) can be used
for instruction reuse, value prediction and branch
predictions.

8 References

[1] A. Sodani and G. Sohi, Dynamic Instruction Reuse, in

Proceedings of 24th Annual International
Symposium on Computer Architecture, pp.194 - 205
June, 1997.

[2] C.K. Luk and T. Mowry, Compiler based prefetching
for recursive data structures, in Proceedings of the
7th International Conference on Architectural
Support for Programming Languages and Operating
Systems, pp. 222-233 Oct. 1996.

[3] C. Zhang, F. Vahid and W. Najjar, Energy benefits of
a configurable line size cache for embedded systems,
IEEE International Symposium on VLSI Design,
Tampa, Florida, February 2003.

[4] C. Zhang, F.Vahid and W.Najjar, A highly
configurable cache architecture for embedded
systems, in Proceedings of 30th Annual International
Symposium on Computer Architecture, pp.136 –146,
June. 2003.

[5] C. Zhang and F. Vahid, Using a victim buffer in an
application-specific memory hierarchy, Design
Automation and Test in Europe Conference (DATE),
pp. 220-225, February 2004.

[6] D. Burger and T. M. Austin. “The SimpleScalar Tool
Set, Version 2.0”, Tech. Rep. CS-1342, University of
Wisconsin-Madison, June 1997.

[7] E. McLellan. The Alpha AXP architecture and 21064
processor. IEEE Micro, 13(4):36–47, June 1993.

 [8] G. Lesartre and D. Hunt. PA-8500: The continuing
evolution of the PA-8000 family. Proceedings of
Compcon, 1997.

[9] H. Albonesi, “Selective Cache Ways: On-Demand
Cache Resource Allocation,” Journal of Instruction
Level Parallelism, May 2000.

 [10] J. L. Baer and T. F. Chen, “An effective on –chip
preloading scheme to reduce data access penalty. ”In
Proceedings of the Supercomputing’91, pp. 176-186,
1991

 [11] M.B.Kamble and K.Ghose, Energy-efficiency of
VLSI caches: a comparative study, in Proceedings of
Tenth International Conference on VLSI Design,
pp.261-267 Jan. 1997.

 [12] M. Guthaus, J. Ringenberg, T. Austin, T. Mudge, R.
Brown, "MiBench: A free, commercially
representative embedded benchmark suite, in
Proceedings of the IEEE 4th Annual Workshop on
Workload Characterization," Austin, TX, December
2001.

[13] M. Tomasko, S. Hadjiyiannis, and W. A. Najjar,
“Experimental Evaluation of Array Caches”, IEEE
TCCA Newslatters, pp. 11-16, March 97.

[14]N. P. Jouppi, Improving direct-mapped cache
performance by the Addition of a small fully
associative cache and prefetch buffers, in
Proceedings of the 17th ISCA, pp. 364-373, May
1990.

[15] O. S. Unsal, I. Koren, C. M. Krishna, C. A. Moritz,
“The Minimax Cache: An Energy-Efficient
Framework for Media Processors,” 8th International
Symposium on High-Performance Computer
Architecture, HPCA8, Cambridge, MA, pp. 131-140,
February 2002.

[16] P. Chen, K. Kavi and R. Akl. "Performance
enhancement by eliminating redundant function
execution", Proceedings of the IEEE 39th Annual
Simulation Conference, Huntslville, AL,pp 143-150,
April 2-6, 2006.

 [17] P.Ranganathan, S. Adve, and N.P. Jouppi,
“Reconfigurable Caches and their Application to
Media Processing,” Int. Symp. on Computer
Architecture, 2000.

[18] S.J.E.Wilton and N.P.Jouppi, "CACTI: an enhanced
cache access and cycle time model," IEEE Journal of
Solid-State Circuits, Volume: 31 Issue:, pp.677 -
6885 , May 1996.

[19] Y. Sazeides and J. E. Smith, “The predictability of
Data values”, In Proceedings of the 30th Annual
International Conference on Microarchitecture, pages
248-258, 1997.

240

	Abstract
	3 Influence of different Parameters
	Table 1: Descriptions of benchmarks

