
__
This research is supported in part by the following grants from NSF, MIP-9796310 and EIA-9729889.

Hyperactive Messages

KRISHNA KAVI
The University of Alabama in Huntsville

ALINA HERNANDEZ and DAVID LEVINE
The University of Texas at Arlington

ABSTRACT
Hyperactive Messages are similar to Active Messages;

but they are designed with two goals. Like active messages,
Hyperactive Messages facilitate efficient communication
among computations distributed over a network of
workstations. But they also facilitate for the dynamic
insertion of code or upgrades to existing code into a
computation. If a Hyperactive Message carries data it is
processed as a normal Active Message. On the other hand, if
a Hyperactive Message carries the code for a service, the
code is loaded into the process’s address space and linked to
an idle thread. With Hyperactive Messages any instance of a
distributed program has the capability to dynamically
change its configuration by attaching or detaching services.
Such a capability can be used for load balancing and
dynamic service upgrading.

Keywords: Active Messages, Threaded Abstract Machine,
Code-Migration.

1. INTRODUCTION
Hyperactive messages permit for code migration by

packaging the executable object with a messge and the code
is loaded into the address space an idle thread at receiving
node. With Hyperactive messages any instance of a
distributed program has the capability to dynamically
change its configuration by attaching or detaching services
as needed. Such a capability can be used for load balancing
and dynamic service upgrading. Our research is related to
numerous projects on the design of network of workstations,
as well as with research on CORBA, Java and other code-
migration projects [4]. However our research goals and
model differs from these. Our model is based on three main
concepts: fine-grain parallelism, Hyperactive messages, and
Associative Broadcast. Fine-grained parallelism is achieved
by using the Threaded Abstract Machine (TAM) [3]. In this
paper we will describe an implementation and our
experience with Hyperactive Messages. The third
component of our research is described elsewhere in
literature [1].

2. HYPERACTIVE MESSAGES (HAM)

The architecture for implementation of Hyperactive
messages is the Threaded Abstract Machines [3]. A TAM
program is a collection of code-blocks, which typically

represent a function or loop body in a high-level language
program. A code-block contains declarations, inlets, and
threads. A TAM thread is a non-blocking sequence of
instructions. An inlet is a sequence of instructions that
handles a specific message and forms the basis for the
implementation of Active (and Hyperactive) messages.

Our Hyperactive messaging system requires an
implementation of active messages and the ability to
dynamically bind computations to threads. We used the
GNU gcc compiler with dynamic loading features called
lazy loading. By enabling lazy loading, the system's
"dynamic library loader" is able to load shared libraries in
the program's address space during execution time. To
utilize this facility, all dynamically loadable functions must
be coded as regular C functions. Once the functions are
coded, the source file must be compiled as a dynamic
linkable library (DLL) by using the “-shared” option of the
compiler. Additionally, the program that requires the
loading of the functions must include the “dlfcn.h” header
file in its source file, and must be compiled with the “-lmld”
option of the compiler. Once the program has been
compiled and running, it can use the “mld” interface to load
routines in the process’s address space, invoke the
previously loaded routines or unload routines when they are
no longer required. The key "mld" API’s can be found in
[5].

We designed and implemented Active messages along
the Generic Active Messages (GAM) interface definitions
provided in [2]. We use UDP/IP for communication among
HAM processes (representing a TAM activation frame). The
GAM API’s can be found in [5]. As in the TAM execution
model, HAM messages not only transfer data but also
control. Each active message sent must specify the name of
a remote inlet responsible for handling the message.
Additionally, each message may specify the name of a local
inlet to receive acknowledgments. Hyperactive messages are
directed to predefined special inlets.

3. HAM LIBRARY PROGRAMMING MODEL

Our initial goal is to prove the feasibility of
implementing the Hyperactive messages concept. To prove
this concept we implemented a set of library functions that
can be used by the parallel versions of conventional C
programs. As described in the previous section, we
developed a TAM like execution environment and Generic

Active Messages using UDP/IP. The current system runs on
a network of DEC Unix systems, with GNU dynamic link
loaders and Pthread libraries. HAM programs are viewed as
sets of inlets, static threads and dynamic threads. More
detailed information on the HAM API’s can be found in [5].

Inlets. Similar to TAM, out Inlets are nothing more than
functions in the user’s program that are responsible for
handling specific messages.

Static Threads. Static threads, implemented as pthreads,
are created at the beginning of the program’s execution.
When a static thread is created, it waits on a condition
variable until an inlet or some other thread forks it.
Functions comprising the static thread must be specified
and bound permanently. The function body must be
wrapped by special instructions called “st_init” and
“st_exit”. Except for thread signaling, inlets and threads
communicate with each other through global variables.

Dynamic Threads. Dynamic threads are similar to static
threads, except that the function comprising the thread
execution is bound dynamically and the user needs to
specify only the number of dynamic threads needed.
Dynamic threads are pthreads that wait on a condition
variable until a service is attached to them (through a
Hyperactive message) and they are forked either by an
inlet, another thread, or a remote process. Dynamic
threads cannot communicate with other threads and
inlets through global variables. The
dynamic_thread_fork function must be invoked with the
following arguments: service name, a buffer containing
data to be passed to the thread as argument, and the
buffer’s size. When enabled, the currently bound thread
function (service) is invoked passing the data buffer and
size as arguments. The binding of services associated
with dynamic threads can be deleted, making the threads
available for new bindings.

3.1.Message Types and Message Handling

HAM messages can be of four different types: active
messages, Hyperactive messages, dynamic_thread_fork
messages, or dynamic_thread_delete messages. All
messages are treated as active messages; that is, messages
must specify the name of a handler or inlet which will be
invoked when the message arrives to its destination. The
HAM library contains a generic message handler that’s
triggered by the SIGIO signal when a packet arrives. Once
a packet arrives the SIGIO signal is temporarily disabled,
and the handler will read all message packets, then the
SIGIO signal is re-enabled. HAM’s generic message
handler is responsible for: reading the arriving packets,
sending an ACK packet back to the sender, buffering
packets until the message is reassembled, and invoking a
message handler based on the message type.

Active messages are handled simply by invoking an inlet
function.

Hyperactive messages. When a Hyperactive message is
received, the special HAM handler searches to see if a
previous binding for the service name exists, in which

case the old binding is replaced by a new binding. If
not, an idle dynamic thread is located and a new
binding is made. Note that the DLL comprising the new
binding must be supplied as a file: “service_name.so”.
If the message contains the actual binaries, a file will be
created by the handler. Subsequently, the code is loaded
and the new service is registered. An acknowledgment
is returned to the sender if a remote inlet is specified.

Dynamic Thread Fork messages are used to fork dynamic
threads. Note that these messages are needed to fork
dynamic threads.

Dynamic Thread Delete messages are used for removing an
existing binding with a dynamic thread. An
acknowledgment is returned to the sender if a remote
inlet is specified.

3.2. Library Usage

To be able to make proper use of the HAM library
implementation, the user must complete the following steps:

1♠ Write the program using HAM user’s interface [5].
When coding the program the user must remember to:

♦ Structure the program in such a way that some user
functions may act as inlets, and others may act as static
threads.

♦ Use the keyword “i_args” as the only argument to all
inlet functions.

♦ Use the keyword “t_args” as the only argument to all
static thread functions

♦ Use the keywords “st_init” and “st_exit” to enclose the
body of each static thread function.

♦ Declare static thread functions and inlet functions of
type void.

♦ Add p_init(), in_create(), st_create(), and p_exec() to
the program’s "main" function. The only requirement
related to the order of invocation is that p_init() must
be invoked first, and p_exec() must be invoked last. If
the program does not contain static threads or inlets,
in_create() and st_create() may be omitted.

2♠ Compile the program using the HAM library.

3♠ Create a configuration file called “executable_name.cfg”
in the same directory where the executable was created.
This file must have the following format:

♦ All comments must be preceded by a pound sign “#”.
♦ The first line must have the starting address of a range

of available UDP/IP ports, where the number of
available ports must be equal to the number of process
instances being created. The same set of ports must be
available in each of the hosts that will be used to run the
parallel program.

♦ The second line must contain the number of hosts that
will be used, and the number of process instances that
will be created. These two numbers must be separated
by a comma.

♦ The following lines are reserved for the names of the
hosts that will be used to run the parallel program. Each

line may contain only one host name, and the names
used must match those located in the “/etc/hosts” file.

A typical a configuration file should look like.
Base port address
7000
Number of Hosts, Number of processes
2,7
Hosts’ names
mark
ed
cross1

4♠ Set the “HAM_DLL_DIR” environment variable so it
points to the directory where all the dynamic loadable
libraries (DLLs) are located. All process instances will try to
locate the DLL libraries using this variable. If this variable
is not defined the processes will assume they can open the
file without specifying a path. Therefore, it’s advisable to
add the instruction to set the “HAM_DLL_DIR”
environment variable to the user’s “.cshrc” file in all the
hosts involved in the execution of the parallel program. The
DLL libraries contain the services that may be sent as
Hyperactive messages. The user must remember that a
library that contains a service called, for example, “hello”
must be stored in a file called “hello.so” for a process to be
able to read it.

5♠ Make sure that the user can execute remote commands
(i.e., “rsh” and “rcp”) from any host to any other host,
without specifying a different login name.

6♠ Use the “ham_run” program to create all process
instances in the different hosts. “Ham_run” is a very simple
program that uses “rcp” and “rsh” commands to create the
process instances based on the information present in the
program’s configuration file. The output from the processes
are redirected to files named “executable_nameprocess
_id.out”. For example, if the name of the executable is
“hello”, and the process’s ID is zero the output of the
process is redirected to “hello0.out”. All processes are
created from the user’s home directory and the output files
are created in the same directory.

3.3. An Example Scenario

In order to show how HAM threads work, Figure 1
shows a simple example that involves the dynamic binding,
deletion and rebinding of a service to a remote dynamic
thread.

♦ First, p0 sends to every process p i, where i = 0,..P-1 (in
our case i=2), two hyper-active messages: one
containing a service that prints “Hello WORLD” and
sends an active message back to the process that forked
the service; and the other containing a service that prints
the local time using the format HH:MM:SS.
♦ After receiving acknowledgment to the Hyperactive
messages, p0 will send a new Hyperactive message to all
the processes with a new version of the “Hello
WORLD” program, that will print “Hello UTA”. This
involves the deletion of previous binding and association
of a new binding. Once p0 receives acknowledgment, it

will repeat the same steps to upgrade the service which
this time will print “Hello UAH”.
♦ In the second half of the experiment, p0 sends a
Hyperactive message containing the code for a service
that will read the operating system process ID and send
it back to the process that forks the service.
Subsequently, it sends a Hyperactive message that
contains the code for a service that simply prints
“Testing dynamic thread table load”. Dynamic_thread
_fork messages are used to execute the service and
receive the OS process ID’s. p0 proceeds to print them.
♦ Since, the processes are only capable of holding three
dynamic threads at one time, all process should reply to
p0 indicating that the second service sent wasn’t loaded
successfully because of lack of space in the dynamic
thread table. Once p0 receives a reply from all processes
indicating the failure in loading the hyper-active
message, it will then send a new hyper-active message to
all pi, where i = 0, 1, containing a print time service that
replaces the existing one. The new print time service
prints the date and time using the following format:
WKD MON DAY, YY HH:MM:SS.
♦ At this point in the program’s execution, p0 will sleep
for 10 seconds and then sends an active message to all
the processes, including itself, requesting that all threads
are canceled. Canceling all the threads causes all
processes to finish their execution.

4. CONCLUSIONS

In this paper we described a new concept called
Hyperactive Messages and its implementation as a
feasibility study. We used Generic Active messages and
TAM model as a general framework for the implementation.
The actual code was developed on a network of DEC Alpha
workstations running DEC UNIX, and connected by
Ethernet. We use Pthreads for the implementation of HAM
threads and inlets, and UDP for communication over the
network. We developed and tested several test programs to
utilize the capabilities of Hyperactive messages. In this
implementation, performance was not our primary concern.
However, we hope to revise the implementation to achieve
better performance.

Active Messages require message handlers not to block,
in order to avoid deadlocks, and to run only for a short
period of time, so not to congest the network. In our HAM
library, the user must deal with these issues, and must try to
avoid these problems by writing short message handlers and
avoiding the use of locks within message handlers.
Optimistic Active Messages [8] achieve the performance of
Active Messages by allowing user code to execute in a
message handler instead of a thread, therefore avoiding
thread management overhead and data copying time.
Handlers are compiled with the assumption that they run
without blocking and complete quickly enough to avoid
causing network congestion. At run-time this assumption is
verified, and if it is false a separate thread is created for the
handler. If most handlers neither block nor run for too long

Optimistic Active Messages achieve the performance of
Active Messages; on the other hand, if a handler does run
for too long the creation of a thread for the handler prevents
it from backing up the network. Furthermore, this approach
frees the programmer from the burden of dealing with the
restriction of Active messages. We may consider adapting
similar methods in our future implementations.

5. REFERENCES

[1] B. Bayerdorffer, "Associative Broadcast and the
Communication Semantics of Naming in Concurrent
Systems", PHD Dissertation, University of Texas at
Austin, Dec. 1993.

[2] D. Culler, K. Keeton, C. Krumbein, L. Liu, A.
Mainwaring, R. Martin, S. Rodrigues, K. Wright, and
C. Yoshikawa, "Generic Active Message Interface
Specification", Draft Technical Report, Computer
Science Division, University of California at Berkeley.

[3] D. Culler, S. Goldstein, K. Schauser, and T. Von
Eicken, "TAM-A Compiler Controlled Threaded
Abstract Machine", Journal of Parallel and Distributed
Computing, 1993, pp. 347-370..

[4] A. Fuggetta, G.P. Picco, and G. Vigna “Understanding
Code Mobility”, IEEE Trans. on Software Engr., May
1998.

[5] A. Hernandez. “Hyperactive Messages”, MS Thesis,
Dept of CSE, UTA, Arlington, TX 76019, Dec. 1998.

[6] R. Stevens, "Unix Network Programming", Prentice
Hall, Englewood Cliffs, N.J., 1990.

[7] T. Von Eicken, D. Culler, S. Goldstein, and K.
Schauser, "Active Messages: a Mechanism for
Integrated Communication and Computation", in
Proceedings of the 19th International Symposium on
Computer Architecture, Gold Coast, Australia, May
1992, pp. 256-266.

[8] D. Wallace, W. Hsieh, K. Johnson, M. Kaashoek, and
W. Weihl, "Optimistic Active Messages: A Mechanism
for Scheduling Communication with Computation",
PPoPP ’95, July 1995.

P0
P

0 P 1

HAM: Print “Hello WORLD”
HAM: Print “Hello WORLD”

HAM: Print “Time: HH:MM:SS”

AM: Print “Hello WORLD” loaded

AM: Print “Time: HH:MM:SS” loaded
AM: Print “Hello WORLD” loaded

AM: Print “Time: HH:MM:SS” loaded
RDT_FORK: Print “Hello WORLD”

AM: Exec. Print “Time:..” every 3 sec.
AM: Print “Hello WORLD” done

AM: Print “Hello WORLD” done

HAM: Print “Hello UTA”
HAM: Print “Hello UTA”

AM: Print “Hello UTA” loaded
AM: Print “Hello UTA” loaded

RDT_FORK: Print “Hello WORLD”

HAM: Print “Time: HH:MM:SS”

AM: Exec. Print “Time:..” every 3 sec.

RDT_FORK: Print “Hello UTA”
RDT_FORK: Print “Hello UTA”

HAM: Print “Hello UAH”
HAM: Print “Hello UAH”

AM: Print “Hello UAH” loaded
AM: Print “Hello UAH” loaded

RDT_FORK: Print “Hello UAH”
RDT_FORK: Print “Hello UAH”

AM: Print “Hello UTA” done
AM: Print “Hello UTA” done

AM: Print “Hello UAH” done
AM: Print “Hello UAH” done

HAM: Get OS PID
HAM: Get OS PID

HAM: Test dynamic thread table load

AM: Get OS PID loaded

AM: Test dyn. thread table not loaded

AM: Get OS PID loaded

HAM: Test dynamic thread table load

AM: Test dyn. thread table not loaded
RDT_FORK: Get OS PID

RDT_FORK: Get OS PID

HAM: Print “Time: MM DD YY HH...”
AM: Get OS PID done

AM: Get OS PID done

AM: Cancel threads
AM: Cancel threads

HAM: Print “Time: MM DD YY HH...”

Figure 1. Message flow of the dynamic service upgrade program.

