
Trace Driven Data Structure Transformations
Tomislav Janjusic and Krishna M. Kavi

Computer Science and Engineering
University of North Texas
Denton, Texas 76207-7102

Email: {tjanjusic,krishna.kavi}@unt.edu

Christos Kartsaklis
Oak Ridge National Laboratory

Computer Science and Mathematics Division
Oak Ridge, TN 37830

Email: kartsaklisc@ornl.gov

Abstract—As the complexity of scientific codes and computa-
tional hardware increases it is increasingly important to study the
effects of data-structure layouts on program memory behavior.
Program structure layouts affect the memory performance differ-
ently, therefore we need the capability to effectively study such
transformations without the need to rewrite application codes.
Trace-driven simulations are an effective and convenient mech-
anism to simulate program behavior at various granularities.
During an application’s execution, a tool known as a tracer
or profiler, collects program flow data and records program
instructions. The trace-file consists of tuples that associate each
program instruction with program internal variables. In this
paper we outline a proof-of-concept mechanism to apply data-
structure transformations during trace simulation and observe
effects on memory without the need to manually transform an
application’s code.

I. INTRODUCTION

A memory trace is a collection of all executed memory
access references during program execution. A single trace-
line is any instruction that modifies a memory location at a
given address X . For rudimentary analysis it is sufficient to
analyze a trace consisting of a 3-tuple trace-line consisting of
an access type, address, and the size of the data access. This
information is enough to estimate how well a program utilizes
memory and the potential bottlenecks in memory performance.

However, if we wish to study an application in greater
detail we must include additional meta-data that describe the
collected traces. For example we need to know which program
module executed the trace-line and which data element was
accessed during that memory reference. This level of detail is
necessary to reason about any possible modification’s we may
want to apply to the application.

There are various tools which enable trace-driven memory
analysis [1], [2], [3], [4], [5]; however, for the purposes of this
study we will concentrate on Gleipnir [6] and DineroIV [7].
Gleipnir is a memory profiling and tracing tool developed as a
plug-in tool for a binary instrumentation framework Valgrind
[8]. It collects fine-grained memory trace information which
enables users to perform advanced memory analysis. DineroIV
is trace-driven cache simulator which performs basic cache
analysis. It was modified to take full advantage of Gleipnir’s
generated traces. Original DineroIV reports cache statistics
of a given trace input that gives a user a general overview
of a cache’s behavior. The modified version tracks cache
statistics that pertain to function and variable level accuracy.

This means that a user is able to observe conflicts between
program structures and analyze if any transformation should
be considered to improve an application’s cache behavior.

Trace transformation is the most recent work added to the
simulator and is the core topic of this paper. It is a new module
described in later sections which performs rule based structure
transformations.

The rest of the paper is organized as follows. Section 2
describes related work in the area of program tuning and
performance optimization. Section 3 describes the Gleipnir
and DineroIV tool in greater detail. Section 4 describes the
trace transformation module, the latest addition to DineroIV.
Section 5 demonstrates a few basic transformation examples.
Section 6 describes future research directions, and conclusions
are discussed in section 7.

II. RELATED WORK

In order to tune and optimize an application programmers
(i.e. users) profile applications using various profiling tools.
The tools can be categorized into analysis tools, simulations,
and hardware performance analysis, depending on their imple-
mentation.

• Analysis tools come in a variety of flavors ranging from
compiler driven[9] static analysis to full dynamic profil-
ing. As a rule of thumb offline application analsis or static
analysis is faster but less accurate [10], [4]. Dynamic or
runtime application analysis is slower but more accurate
[2], [3], [8]. This is because dynamic analysis allows the
tool to account for any code paths which are not visible
during static anlysis.

• A simulation is observing hardware behavior in software.
This means that an application must be executed on
simulated hardware to observe any effects it has on po-
tential host hardware. The main advantage of simulation
is that a user is in full control of the simulated hardware.
This allows the user to pause, forward, or even execute
an application in reverse. Simulation’s drawbacks are in
speed and accuracy.

• Hardware counter performance analysis is observing ap-
plication’s behavior through hardware performance coun-
ters. Performance counters are hardware units that ship
with modern processors. When invoked they enable to
user to collect information about the hardware that the
application is running on. Enabling hardware counters

can be achieved through the operating system or directly
from the application using library interfaces such as
PAPI [11]. This also means that the application must be
modified in order to insert the calls to activate and collect
this information. Hardware performance counters cannot
isolate an application’s effects from the overall system
meaning that inserting calls into the application already
skewes the application’s performance.

For our purposes we used Gleipnir. Gleipnir is built as
a plug-in tool for Valgrind[8]. A binary instrumentation
framework which falls under software analysis tools. The
framework already comes with a set of cache-profiling and
trace-generating tools but none provide the level of detail
captured with Gleipnir. A cache profiling tool is a tool which
collects information about a processor’s cache state. Most
tools show an overall statistic, and the more advanced tools
isolate program’s function behavior or report cache statistics
per source code line.

In order to compare and contrast other tools in this area we
must take note of what Gleipnir is and what it is not. First
and foremost, Gleipnir is a memory tracing tool, the analysis
of the traces is external and in our case left to our modified
version of DineroIV [7]. Decoupling the trace collection from
the simulation offers several benefits. In addition to cache
analysis other uses for traces are possible. Gleipnir’s traces
are meant to provide detailed meta-data information on every
application’s memory access. This information may be used
for a variety of research areas as well as performance profiling.

III. TOOL DESCRIPTION

A. Tracing Instructions

Gleipnir takes advantage of two key Valgrind’s components.
It utilizes Valgrind’s internal debug parser and the ability to
instrument memory related events. Each event is either an
Instruction Read, Data Read, Data Write, or Data Modify. A
symbol table is a compiler generated table that contains all the
source code information associated with a program’s internal
variables. A debug parser can process this information and
retrieve debug information (source code variables) associated
with instruction addresses. Gleipnir takes advantage of Val-
grind’s debug information parser and feeds the instrumented
instructions into the parser to expand the trace tuple with
additional meta-data.

Figure 1 shows a typical Gleipnir trace line for a static
variable. Visible instructions are annotated with the address to
be fetched, modified, or written to; the function which caused
the access; the scope of the variable, thread that executed
the code; and finally the data element itself. Figure 1 shows
the general trace-line format. The first field is the access
type, either a Load, Store, Modify, or X (for miscellaneous
instructions). The second field is the virtual address of the
data to be accessed followed by the function. If any symbol
information exists the trace will be supplemented with the
element’s Local or Global scope, and the element’s type
Variable or Structure. The next two numbers indicate the

elements Frame and the originating Thread. The final value
is the variable name itself. If the accessed element is part of a
structure then the variable name is shown as a nested structure
of the element name and the structure it belongs to.

S 7ff000108 malloc LS 0 1 zzq args[5]

Fig. 1: Gleipnir’s trace line

Gleipnir relies on Valgrind’s internal debug parser, therefore
any application that needs to be profiled for local and global
structures must be compiled with the compiler’s -g flag.

The source code in Listing 1 and 2 show a sample of static
and global data structures and their respective trace when
traced by Gleipnir. From the example we can observe several
of Gleipnir’s key components. The source code’s main func-
tion starts with a Gleipnir specific macro that turns the instru-
mentation on. With the macros GLEIPNIR START INSTRUMENTATION

and GLEIPNIR STOP INSTRUMENTATION the user can control which
code regions to instrument. This is useful for fast forward the
tracing.

Listing 1: Example source code
1struct _typeA {
2double d1;
3int myArray[10];
4};
5struct _typeA glStruct;
6struct _typeA glStructArray[10];
7

8int glScalar;
9int glArray[10];
10

11void foo(struct _typeA StrcParam[])
12{
13int i;
14for(i=0; i<2; i++){
15glStructArray[i].d1 = glScalar;
16glStructArray[i].myArray[i] = glArray[i+1];
17

18StrcParam[i].d1 = glArray[i];
19}
20return;
21}
22

23int main(void)
24{
25GLEIPNIR_START_INSTRUMENTATION;
26

27struct _typeA lcStrcArray[5];
28int i, lcScalar, lcArray[10];
29

30glScalar = 321;
31lcScalar = 123;
32

33for(i=0; i<2; i++)
34lcArray[i] = glScalar;
35

36foo(lcStrcArray);
37

38GLEIPNIR_STOP_INSTRUMENTATION;
39return 0;
40}

The code defines and declares global structures and a scalar
element at line 4-13. The function foo is defined on lines
15-25. At line 31 and 32 the main function declares several
structures and couple scalar elements. In lines 34-38 the
structures and scalar elements are accessed. Finally in line
40 a call to function foo is made and the corresponding code
in line 15-25 is executed.

The program’s execution is observable from the correspond-
ing trace. Each trace line represent the data elements accessed
during the program execution.

Listing 2: trace-file snippet
1START PID 13063
2S 7ff0001b0 8 main LV 0 1 _zzq_result
3L 7ff0001b0 8 main
4S 000601040 4 main GV glScalar
5S 7ff0001bc 4 main LV 0 1 lcScalar
6S 7ff0001b8 4 main LV 0 1 i
7L 7ff0001b8 4 main LV 0 1 i
8L 000601040 4 main GV glScalar
9L 7ff0001b8 4 main LV 0 1 i
10S 7ff000180 4 main LS 0 1 lcArray[0]
11M 7ff0001b8 4 main LV 0 1 i
12L 7ff0001b8 4 main LV 0 1 i
13L 000601040 4 main GV glScalar
14L 7ff0001b8 4 main LV 0 1 i
15S 7ff000184 4 main LS 0 1 lcArray[1]
16M 7ff0001b8 4 main LV 0 1 i
17L 7ff0001b8 4 main LV 0 1 i
18S 7ff000050 8 main
19S 7ff000048 8 foo
20S 7ff000030 8 foo LV 0 1 StrcParam
21S 7ff000044 4 foo LV 0 1 i
22L 7ff000044 4 foo LV 0 1 i
23L 000601040 4 foo GV glScalar
24L 7ff000044 4 foo LV 0 1 i
25S 0006010e0 8 foo GS glStructArray[0].d1
26L 7ff000044 4 foo LV 0 1 i
27L 0006010a4 4 foo GS glArray[1]
28L 7ff000044 4 foo LV 0 1 i
29S 0006010e8 4 foo GS glStructArray[0].myArray

[0]
30L 7ff000044 4 foo LV 0 1 i
31L 7ff000030 8 foo LV 0 1 StrcParam
32L 7ff000044 4 foo LV 0 1 i
33L 0006010a0 4 foo GS glArray[0]
34S 7ff000060 8 foo LS 1 1 lcStrcArray[0].d1
35M 7ff000044 4 foo LV 0 1 i
36L 7ff000044 4 foo LV 0 1 i
37L 000601040 4 foo GV glScalar
38L 7ff000044 4 foo LV 0 1 i
39S 000601110 8 foo GS glStructArray[1].d1
40L 7ff000044 4 foo LV 0 1 i
41L 0006010a8 4 foo GS glArray[2]
42L 7ff000044 4 foo LV 0 1 i
43S 00060111c 4 foo GS glStructArray[1].myArray

[1]
44L 7ff000044 4 foo LV 0 1 i
45L 7ff000030 8 foo LV 0 1 StrcParam
46L 7ff000044 4 foo LV 0 1 i
47L 0006010a4 4 foo GS glArray[1]
48S 7ff000090 8 foo LS 1 1 lcStrcArray[1].d1
49M 7ff000044 4 foo LV 0 1 i
50L 7ff000044 4 foo LV 0 1 i

The trace starts with the main function storing a value to
the global variable glScalar in line 4 coresponding to the
source code line 34. Note that we do not store the frame
number and thread id because global variables are globally
visible; therefore, there is no need to identify the frame of the
corresponding variable.

The For loop’s 2 iterations on lines 37-48 are shown in trace
lines 6-17. Notice that trace lines are loading the loop iteration
variable i as expected. In trace lines 19-50 the trace shows the
executed function foo. At each step the trace identifies the
structure or elements scope, the calling function, the frame id
and thread id if this info is necessary, and each structure’s
element. It also identifies the corresponding offset of each
element if the access is in an array of structures.

Because we are only interested in data structure transfor-
mation’s we do not explicitly trace instruction fetches from
memory and therefore disabled this option in our examples.

IV. TRANSFORMATION ENVIRONMENT

A typical analysis procedure involves three steps as outlined
in figure 2. A user first runs the application through Gleipnir.
This generates the trace-file necessary for further parsing or
trace-analysis. Gleipnir collects all the necessary informa-
tion for fine-grained cache-simulation. A modified version of
DineroIV ships with Gleipnir tailored to take advantage of
Gleipnir’s traces. A user is free to run his or her own simulator
or apply any additional trace analyzers.

Plotting the graphs is supplemented through scripts that
parse DineroIV output. A work on a graphical user interface
client is in the works but not available at this time.

Gleipnir Trace File Analyzer Viz Tool

Fig. 2: Tracing and Analysis Cycle

A. Trace Transformation

We perform trace transformation during cache analysis.
Referring back to Figure 2 this means that our module is
added to the analyzer component (i.e. cache simulator). The
key additions to an already modified DineroIV include the
trace transformation rules and trace transformation functions.
A transformation rule is read through a separate file provided
by the user. This implies that the user must provide the full
structure definition. The rules describe the original and the
transformed structure. The user provides a full structure def-
inition with includes structure element type information. We
will describe the rules in greater detail in later subsection for
now note that each rule is one to one mapping between the two
structures. The rules are hard-coded and the mapping between
an in rule and an out rule is not bi-directional. This means
that if a structure with the same nesting is encountered the
simulator will simply ignore it. The transformation functions
determines if a trace line is described by structure meta-data

and applies the necessary transformation as described by the
rules.

This process is summarized as follows:
1) Initialize the rules: at the beginning of each simulation

the simulator will read the in and out rules and set up a
new base address and size for the new structure. Listing
5, 8, 11 describe our three example rules.

2) Check validity: the trace file is processed one trace
line at a time. The simulator will read each trace line
and break the meta-data variable into a nested list of
structures with the final element at the bottom. If the
variable is part of the in rules then that trace line needs
to be transformed.

3) Apply transformation: The in rule is mapped to the out
rule. This involves an intermediate step to calculate a
newly accessed address. If the new structure is ref-
erenced through indirection then additional instruction
insertions are applied that deal with pointer indirections.

4) Print the transformation: Any new trace generated will
be traced into a transformed trace.out file.

5) A complete and transformed trace is compared with the
original trace (eg. Figure 5). This may be performed
using a diff tool or other mechanism.

In this paper we will describe the following three rules:
structure-of-arrays (SoA) to array-of-structure (AoS) transfor-
mations, single level nested structures to single level indirect
structures, and access displacement for cache set-pinning
purposes.

1) Structure of arrays to array of structures transforma-
tions: Listing 3 and 4 show an example of structure of arrays
to array of structures transformations. Listing 3 shows a simple
structure of arrays. In data addressability terms this means
that mX and mY array elements are offset by the array size.
Assuming that elements are offset by larger than a cache
block size any access two both mX and mY elements will
result in two cache loads. To avoid this we must produce
a transformation which collocates both indexed elements for
example through an array of structures.

Listing 3: Transformation 1A
1int main(int aArgc, char **aArgv) {
2typedef struct {
3int mX[LEN];
4double mY[16];}
5MyStructOfArrays;
6MyStructOfArrays lSoA;
7GLEIPNIR_START_INSTRUMENTATION;
8for (int lI=0 ; lI<LEN ; lI++) {
9lSoA.mX[lI] = (int) lI;
10lSoA.mY[lI] = (double) lI;}
11GLEIPNIR_STOP_INSTRUMENTATION;
12return (0); }

Note that transformations in Listing 4 are user transfor-
mations. Our goal is to produce a trace from 1A to 1B
dynamically through the simulator relying only on a rule
described in Listing 5.

Listing 4: Transformation 1B
1int main(int aArgc, char **aArgv) {
2typedef struct { int mX; double mY; }
3MyStruct;
4MyStruct lAoS[LEN];
5GLEIPNIR_START_INSTRUMENTATION;
6for (int lI=0 ; lI<LEN ; lI++) {
7lAoS[lI].mX = (int) lI;
8lAoS[lI].mY = (double) lI;
9}
10GLEIPNIR_STOP_INSTRUMENTATION;
11return 0;}

Figure 3 and 4 are visual representations of the different
structure layouts. Using graphical analyses we can visualize
the transformations as they are layed out on our cache model.
For example in Figure 3 and 4 we have simulated a 32k byte
size, 32bytes per block directly mapped cache. The difference
in the graphs show the more uniformly access pattern observed
in Figure 4. Note that the goal of our automated transforma-
tions is to give the user the ability to visualize various structure
layout transformations.

Fig. 3: Structure of Arrays to Array of Structures

Fig. 4: Structure of Arrays to Array of Structures

Listing 5 describes an input file that outlines the original and
transformed structure. The current limitation is that structure’s
element names must match because we rely on the element’s
name to map and determine if a rule is specified.

Listing 5: Rules for transformation of 1A to 1B
1in:
2struct lSoA {
3int mX[16];
4double mY[16];
5};
6out:
7struct lAoS {
8int mX;
9double mY;
10} [16];

Figure 5 shows the original and the transformed trace. On
the left side we see the original trace while on the right side
we can observe the trace generated by the simulator. The
base address of structures has changed because the structure
mapping changes due to allignment. The tool used to show the
trace differences is a graphical diff tool. Figure 5 is only for
illustration purposes it aims to show how we can use new trace
information to study transformed structures. Struct-of-Arrays
to Array-of-Structs transformations were explored in [12].

Fig. 5: Structure of Arrays to Array of Structures

2) Single level nested structures to single level indirect
structures: Another useful transformation is to offset a nested
structure into a pool of memory. A common example is
traversing a list. The goal is to collocate elements of similar
temporal locality into unique spatial memory pools.

Listing 6 and 7 are examples of nested structures trans-
formed into structures accessed through pointers.

Listing 6: Transformation 2A
1int main(int aArgc, char **aArgv) {
2typedef struct {
3int mFrequentlyUsed;
4struct { double mY; int mZ; } mRarelyUsed;
5} MyInlineStruct;
6
7MyInlineStruct lS1[LEN];
8GLEIPNIR_START_INSTRUMENTATION;
9for (int lI=0 ; lI<LEN ; lI++) {
10lS1[lI].mFrequentlyUsed = lI;
11lS1[lI].mRarelyUsed.mY = lI;
12lS1[lI].mRarelyUsed.mZ = lI;
13}
14GLEIPNIR_STOP_INSTRUMENTATION;
15return (0);
16}

Listing 7: Transformation 2B
1int main(int aArgc, char **aArgv) {
2typedef struct { double mY; int mZ; }

RarelyUsed;
3typedef struct {
4int mFrequentlyUsed;
5RarelyUsed *mRarelyUsed;
6} MyOutlinedStruct;
7
8RarelyUsed lStorageForRarelyUsed[LEN];
9MyOutlinedStruct lS2[LEN];
10
11for (int lI=0 ; lI<LEN ; lI++) {
12lS2[lI].mRarelyUsed =

lStorageForRarelyUsed+lI;}
13
14GLEIPNIR_START_INSTRUMENTATION;
15for (int lI=0 ; lI<LEN ; lI++) {
16lS2[lI].mFrequentlyUsed = lI;
17lS2[lI].mRarelyUsed->mY = lI;
18lS2[lI].mRarelyUsed->mZ = lI;
19}
20GLEIPNIR_STOP_INSTRUMENTATION;
21return (0);}

Listing 6 defines a structure of a frequently used element
and a rarely used structure, lines 2-5. The goal of this transfor-
mation is to keep the rarely used structure in an outside pool of
memory and collocate frequently used elements. An example
of this transformation is seen in Listing 7. The mRarelyUsed
structure, line 2, is accessed through a pointer mRarelyUsed,
line 5. Note that an access to mRarelyUsed introduces a
level of indirection due to the pointer. The transformed trace
must reflect this transformation because the new trace should
reflect any additional memory accesses which result from
transforming structures. In this case the indirection is an

extra trace line that inserts a load to the pointer reference
mRarelyUsed. Our options are to copy the preceding line and
change the effective address or arbitrarily insert a call to any
stack memory reference.

Fig. 6: single level nested structure

Fig. 7: Structure access through indirection

Figure 6 and 7 show the visual representation of the preced-
ing transformations. It can be observed that the uniformity of
cache accesses changed due to the extra load instructions. In
addition Figure 7 shows the changes that are the result from
offloading data to an external structure.

Listing 8 outlines the rule file needed to perform this
transformation. The in rule defines a bottom-up approach to
nesting. The top most defined rule is the deepest structure
in the structure tree. This allows us to compute the outer
structure’s size easier and it also allows us to perform trans-
formations in multiple structure nestings. The out rule defines
the transformation. It consists of two structures and a pointer
reference. The pointer type dictates which structure our rule
applies for. The format is different in that we must specify the
structure name to be transformed and the pointer name.

Figure 8 shows the example trace compared with the
transformed trace. Notice the indirection throught the loaded
pointer mRarelyUsed in the green highlighted lines.

Fig. 8: Nested structure to Structure with indirection

Listing 8: Rules for transformation of 2A to 2B
1in:
2struct mRarelyUsed {
3double mY;
4int mZ;
5};
6struct lS1 {
7int mFrequentlyUsed;
8struct mRarelyUsed;
9}[16];
10
11out:
12struct lStorageForRarelyUsed {
13int mY;
14double mZ;
15}[16];
16struct lS2 {
17int mFrequentlyUsed;
18* mRarelyUsed:lStorageForRarelyUsed;
19}[16];

3) Stride Accesses: Stride Accesses are used to transform a
structure such that accesses to structure elements are mapped
to specific cache sets. The goal with a stride access pattern is
to restrict structure or array elements access to specific cache
lines.

Listing 9 shows an access pattern to a contiguous array. If
the array is larger than the cache a contiguous access to the
array will replace the entire cache and populate it with array
elements. The desired transformation is to force array accesses
to specific cache sets through striding. The idea is to conceive
a layout that exploits the cache’s set/column−mapping policy

so that accesses to select data structures can be confined in
a subset of the cache. Assume the PowerPC 440 cache[13]
which is 32k bytes, 64ways per set with 32bytes per cache line
and implements a round-robin eviction policy. Furthermore
assume that we have 4096 bytes of contiguous accesses and
a cold cache. This will consume the first eight columns by
writting 256 bytes in each set (i.e. 8 cache lines/set). The
transformation will direct all 4096 bytes of accesses to a single
set, achieving 50% residency as a set cannot hold that many
bytes (64 ways × 32 bytes = 2048 bytes).

Listing 9: Transformation 3A
1int main(int aArgc, char **aArgv) {
2int lContiguousArray[LEN];
3GLEIPNIR_START_INSTRUMENTATION;
4for (int lI=0 ; lI<LEN ; lI++) {
5lContiguousArray[lI] = lI;
6}
7GLEIPNIR_STOP_INSTRUMENTATION;
8return (0);}

Listing 10 shows a transformation where the array access
pattern is restricted to a subset of cache sets. The stride
formula is computed in line 9-10. The new lSetHashingArray
is of length LEN*SETS, for a LEN value of 1024 this is 64k
bytes (1024 * 16 * 4 bytes). In contrast the original array is
of size LEN, 4k bytes. The idea is to force an array mapping
to the same set by offsetting array elements. The downside to
this technique is that space is wasted. The upside is that we
can reduce cache trashing by maintaining the same amount of
cache misses for the array structure. Another drawback is that
a user must be aware of the host system’s cache configuration

in order to apply successfull transformations.

Listing 10: Transformation 3B
1int main(int aArgc, char **aArgv) {
2#define SETS 16
3#define CACHELINE 32
4const int ITEMSPERLINE=CACHELINE/sizeof(int)
5int lSetHashingArray[LEN*SETS];
6GLEIPNIR_START_INSTRUMENTATION;
7for (int lI=0 ; lI<LEN ; lI++) {
8lSetHashingArray[(lI/ITEMSPERLINE)*
9(SETS*ITEMSPERLINE) + (lI%ITEMSPERLINE)] =

lI;
10}
11GLEIPNIR_STOP_INSTRUMENTATION;
12return (0);}

The rules in Listing 11 define an array and a stride formula.
The stride formula to compute the rules is hard-coded. We
only identify the index and use it to compute the stride. Any
intermediate indexes are hard-coded into the simulator because
they are used when computing a stride (eg. ITEMSPERLINE)

and must be accounted for in the trace. To account for the
additional instructions we have hand forced the simulator to
inject additional instructions.

Listing 11: Rules for transformation of 3A to 3B
1in:
2int lContiguousArray[16]:lSetHashingArray;
3out:
4int lSetHashingArray[256((i/8)*(16*8)+(i%8))];

Figure 9 shows the original trace on the left and a semi-
automatic1 transformed trace. Notice that this is not a fully au-
tomatic transformed trace because the stride indirection is not
fully implemented. The main limitation in our implementation
is accounting for all scalar variables that might be accessed
during a stride access.

Figure 10 and 11 show the visual output of the two
transformations. In Figure 10 we have a contiguous access

1We preselected additional instruction after running the hand transformed
code

Fig. 9: Structure of Array to Array’s of Structures.

to 0-15 cache sets and each set has 64 columns. In the second
figure we have offset the cache stride by a number of bytes
according to the formula in Listing 11. The offsetting directs
all accesses to a single set (Figure 11), hence giving the
impression that the data structure is ”pinned” on it. Because
of lSetHashingArray’s base address every access is indexed to
set 11, but a displacement may be used to yield another set.

Fig. 10: Contiguous array

Fig. 11: Array striding

V. CONCLUSIONS

In this paper we presented a proof-of-concept trace-oriented
technique for automated data-structure transformation. It is
trace-driven because the main input is a non-transformed trace-
file. The transformation is automated because the trace is
transformed automatically during simulation execution. Trans-
formations are rule dependent and we have elaborated on
three common transformations which we explained in the
paper. Software reengineering for performance purposes is
a challenging task. We have presented a novel approach
to this task of exploring the transformation space of data
structures that does not require source code modifications.
Similarly to computational steering, our method allows users
to safely and interactively modify data structures in a kernel in
order to see what behavior the transformation triggers in the
cache including, importantly, how transformations may lead
to unforeseen conflicts. In conclusion we want to emphasize
that the proposed techniques are proof-of-concept rather than
a finished product.

VI. FUTURE WORK

There are some shortcomings with our approach. Due to the
nature of the tracing tool we can apply our transformations to
static data structures only. This is in many ways a limitation
and therefore we must explore the ability to transform dynamic
structures as well. Moreover, the trace information is limited
by the instrumentation tool to private caches only because
the addresses used are virtual addresses. This is a limitation
because if we wish to simulate a shared level cache we must
take physical addresses into account. This can be remedied
by using a more sophisticated instrumentation tool2, or by
mapping kernel page-maps information directly into the trace.

ACKNOWLEDGMENT

This work is made possible in part by support from the NSF
Net-Centric Industry/University Research Center, and ORNL
summer internship support. Computational resources were
provided by UNT’s High Performance Computing Initiative,
and Oak Ridge National Laboratory.

REFERENCES

[1] A. Srivastava and A. Eustace, “Atom: A system for building customized
program analysis tools.” ACM, 1994, pp. 196–205.

[2] C.-K. Luk, R. Cohn, R. Muth, H. Patil, A. Klauser, G. Lowney,
S. Wallace, V. Janapa, and R. K. Hazelwood, “Pin: Building customized
program analysis tools with dynamic instrumentation,” in In Program-
ming Language Design and Implementation. ACM Press, 2005, pp.
190–200.

[3] D. L. Bruening, “Efficient, transparent and comprehensive runtime code
manipulation,” Cambridge, MA, USA, Tech. Rep., 2004, AAI0807735.

[4] B. Buck and J. K. Hollingsworth, “An API for runtime
code patching,” Int. J. High Perform. Comput. Appl.,
vol. 14, pp. 317–329, November 2000. [Online]. Available:
http://dl.acm.org/citation.cfm?id=1080622.1080630

[5] J. Tao, T. Gaugler, and W. Karl, “A profiling tool for detecting cache-
critical data structures,” in Euro-Par, 2007, pp. 52–61.

[6] T. Janjusic, K. M. Kavi, and B. Potter, “International conference on
computational science, ICCS 2011 Gleipnir: A Memory Analysis Tool,”
Procedia CS, vol. 4, pp. 2058–2067, 2011.

[7] M. D. H. Jan Edler, “DineroIV Trace-Driven Uniprocessor Cache Sim-
ulator.” [Online]. Available: http://www.cs.wisc.edu/ markhill/DineroIV

[8] N. Nethercote and J. Seward, “Valgrind: a framework
for heavyweight dynamic binary instrumentation,” SIGPLAN
Not., vol. 42, pp. 89–100, June 2007. [Online]. Available:
http://doi.acm.org/10.1145/1273442.1250746

[9] G. Chakrabarti and F. Chow, “Structure layout optimizations in the
Open64 Compiler: Design, Implementation, and Measurements,” Inter-
national Symposium on Code Generation and Optimization, 2008.

[10] S. L. Graham, P. B. Kessler, and M. K. McKusick, “gprof: a call graph
execution profiler (with retrospective),” in Best of PLDI, 1982, pp. 49–
57.

[11] P. J. Mucci, S. Browne, C. Deane, and G. Ho, “PAPI: A portable
interface to hardware performance counters,” in In Proceedings of the
Department of Defense HPCMP Users Group Conference, 1999, pp.
7–10.

[12] W.-C. Ma and C.-L. Yang, “Using Intel streaming SIMD
extensions for 3D geometry processing,” in Proceedings of the
Third IEEE Pacific Rim Conference on Multimedia: Advances in
Multimedia Information Processing, ser. PCM ’02. London, UK,
UK: Springer-Verlag, 2002, pp. 1080–1087. [Online]. Available:
http://dl.acm.org/citation.cfm?id=648110.747979

[13] “The PowerPC 440 Core, A high-performance, superscalar processor
core for embedded applications,” IBM Microelectronics Division, Tech.
Rep., 1999.

2To our knowledge, there does not exist any instrumentation tool capable
of delivering trace information related to objects physical address placement.

