
Vulnerability Assessment In Cloud Computing

Srujan Kotikela1,a, Krishna Kavi2,a, and Mahadevan Gomathisankaran3,a

aDepartment of Computer Science and Engineering, University of North Texas, Denton, Texas, USA

Abstract— As vulnerabilities keep increasing exponentially
every year, the need to efficiently classify, manage, and
analyse them also increases. Many of the previous attempts
at managing vulnerabilities have not been so successful
because of the use of taxonomy approach. Few of the
recent approaches have used ontologies for vulnerability
management. Ontologies are real world concepts that are
modelled using an ontology language. Ontologies are more
appropriate for vulnerabilities as vulnerabilities can not
be strictly classified into hierarchies (taxonomies) and tend
to overlap. Ontologies support both these characteristics
of vulnerabilities. Cloud computing is redefining the way
computers are used. As more and more users, applications
and businesses move to cloud it becomes very important
to have proper vulnerability management in cloud. In this
paper we present a vulnerability management framework for
cloud computing.

Keywords: security; vulnerability; ontology; cloud computing

1. Introduction
Security vulnerabilities are prevalent across all facets of

software. The vulnerabilities are increasing every year at an
exponential rate. Our experience with software engineering
shows it is very difficult, even impossible to build software
without vulnerabilities, because of the complexity of modern
software systems. So the only way to deal with vulnerabili-
ties is find them and patch them. Discovering and patching
vulnerabilities is not an easy task. To deal with this complex
vulnerability management we need standard and efficient
methods and tools.

The first step to deal with vulnerabilities is classifying
them. Vulnerability classification is a well-studied area in
computer security. Many vulnerability classifications have
been proposed and devised. Most of them have chosen the
taxonomy [1] approach to classify vulnerabilities. However
many of these classifications have proven to be inefficient,
incomplete or erroneous. In taxonomy based classification
the elements being classified are divided into groups and sub-
groups (hierarchy). Hence the taxonomy approach requires
assigning vulnerabilities to one and only one sub-group. But
many times vulnerability would be present in more than
one sub group. This could be due to incomplete and/or

1 SrujanKotikela@my.unt.edu
2 krishna.kavi@unt.edu
3 mgomathi@unt.edu

incorrect definition of the vulnerability or the subgroup. It
has been observed that this situation arises due to the nature
of vulnerabilities themselves [2] [3].

Vulnerabilities are concepts, not entities themselves. It
is natural for them to overlap across different groups. On-
tologies are better suited than taxonomies to model con-
cepts. Ontology [4] is a knowledge representation technique
which is used to model real-world concepts and their rela-
tionships [5]. It is one of the prominent techniques used
to model and share a domain specific knowledge in the
field of information science. Ontologies are widely used
in artificial intelligence, semantic web, and library science
where classification of concepts is very essential. These
properties of ontologies make them perfect candidate for
vulnerability classification. A rich collection of existing
tools and frameworks will make creating ontology based
vulnerability classification easy and efficient. The structured
nature of ontologies makes it easy to reason, query and
infer. These features of ontologies have led to adoption of
ontologies in many security solutions such as [6] [7] [8] [9].

As Cloud Computing [10] continues to expand and evolve
it is influencing the way we think about computing. Every
aspect of computing is now connected to cloud computing.
It is a big game changer across all verticals of computing.
This demands a lot of attention and research for cloud
computing. The Cloud Security Alliance had mentioned that,
security is one of the biggest roadblocks in adopting cloud
computing. As many businesses and users are adopting and
using cloud, there will be lot of software running in the
cloud. Vulnerability management is still relatively new. This
makes the problem even more interesting [11] with respect
to cloud computing.

In this paper we present a solution for vulnerability
management in cloud environments. Our solution uses well
defined ontologies. The proposed framework consists of
Ontological Vulnerability Database, Semantic Natural Lan-
guage Processor and Attack Code Database. We designed an
ontology by extending the Ontology for Vulnerability Man-
agement (OVM). Then we designed a framework around the
ontology and created an Ontological Vulnerability Database
(OVDB) which has semantic collection of vulnerabilities.
The OVDB is linked to an attack script database in which
there is a many-to-many mapping between vulnerabilities
of the OVDB and scripts of the attack script database.
The attack script database is a collection of attack scripts
which will invoke runnable attack code from the attack code
database. The attack code database is compilation of attack

Int'l Conf. Security and Management | SAM'12 | 67

codes from popular attack codebase like Metasploit. This
attack database can be used to launch attacks on applications
to test for the associated vulnerability. A natural language
processor will facilitate natural language and keyword search
on the OVDB. The semantic nature of the ontologies will
facilitate the reasoning and inferences on the OVDB. The
framework facilitates vulnerability scanning and vulnerabil-
ity assessment of an application. This work can be further
expanded to assess the runtime environment by extending
the ontology to include configurations of the environment.

The rest of the paper is organized as follow. Section 2
outlays some background concepts related to our work. Sec-
tion 3 describes the Related Work. Section 5.3 explains the
various Ontologies. Section 4 explains the architecture of our
proposed framework. Section 5 presents the Implementation
of our framework followed by the Future Work in Section 6
and Conclusion in Section 7.

2. Background
Common Vulnerabilities and Exposures (CVE): CVE [12]

is a publicly available listing of vulnerabilities and exposures
in software. This project is initiated and maintained by
MITRE organization. CVE doesn’t attempt to classify the
vulnerabilities. It just enumerates all the vulnerabilities.
Every vulnerability in CVE has a unique identifier, descrip-
tion and list of software systems along with corresponding
versions that are affected by this vulnerability. This public
repository helps many other vulnerability research projects.
The CVE project started by the MITRE organization now
lies at the core of many security/vulnerability research
projects. Our framework also depends directly on CVE
repository at its lowest level. However there are many refined
layers available on top of CVE, such as NVD. We will be
using them than the raw CVE format.

2.1 Ontologies
Ontologies are at the heart of our research and many

vulnerability assessment projects. in this section we will
provide brief introduction about ontologies. Ontology is
defined as “A formal explicit description of concepts in a
domain of discourse, properties of each concept describing
various features and attributes of the concept, and restrictions
on properties. Ontology is a conceptualization of a domain
of interest”. It consists of concepts, relationships between
these concepts and rules specifying the limitations of these
relationships. The concepts from the real world are modelled
as classes in ontology. The members of these classes can
be individuals (real-world-objects) or other classes or a
combination of both. The properties model various attributes
of the individuals or the properties of the classes in general.
Properties are also used to model relationships between two
individuals or classes.

Ontologies are expressed in ontology languages.
OWL [13] is the World Wide Web Consortium (W3C)

standard for representing ontology. OWL stands for Web
Ontology Language. There are 3 sublanguages for OWL:
OWL-Lite, OWL-DL and OWL-Full. The three languages
differ in their expressiveness.

OWL-Lite is the simplest of the three. It is used where
simple hierarchy and simple constraints are sufficient. It is
easy to build ontology in OWL-lite and it is best choice to
migrate an existing taxonomy/hierarchy to an ontology using
OWL-Lite.

OWL-DL is based on Description Logics (DL) and is more
expressive than the OWL-Lite. The inclusion of DL in OWL
can be exploited for automated reasoning due to the First
Order Logic properties. It is also the most used OWL variant
by many researchers.

OWL-Full is required for situations where high expres-
siveness is desired. It is to be chosen when high expres-
siveness is more essential than decidability or computational
completeness of the language. OWL-Full cannot be used for
automated reasoning.

3. Related Work
In this section we will present major components of our

framework followed by an algorithm.
Security Content Automation Protocol (SCAP): SCAP [14] is
a suite of interoperable specifications for automating security
management. SCAP is a standard developed by NIST along
with community participation. By using SCAP protocol to
build a security solution will ensure that a security solution
will be interoperable with other related security solutions.
Our proposed OVDB framework is SCAP compliant. SCAP
is essential for bringing automation, standardization, and
regularity to many security related initiatives. It is the de-
facto standard for achieving inter-operability between vari-
ous security automation projects. Hence we also align our
ontology with SCAP so that we can leverage existing fine
works that are SCAP compliant and also ensure that our
framework interoperable with other similar initiatives and
projects.
National Vulnerability Database (NVD): NVD [15] is a
SCAP compliant vulnerability database maintained by NIST.
It is essentially the SCAP compliant version of the CVE
enumeration. The NVD database is released as NVD feeds
in XML format. This NVD database is used as an input
for the OVDB creation. NVD is a refined version of CVE.
It has all the CVE data and in a SCAP compliant format.
Hence, using NVD makes security solutions more robust
and more interoperable. In the same light we also use the
NVD database as a source for our Ontological Vulnerability
Database.
Ontology for Vulnerability Management (OVM): OVM [16]
is ontology for managing vulnerabilities. Ontologies are
more suitable to model vulnerabilities than taxonomies [2].
OVM uses ontology to store and refer to vulnerabilities
mapped from the NVD vulnerabilities list. OVM can be

68 Int'l Conf. Security and Management | SAM'12 |

Fig. 1: Vulnerability Assessment Framework

used to store and retrieve vulnerabilities. It can be queried
using SWRL (Semantic Web Rule Language) through which
we can perform semantic comparisons between two related
products. OVM is the precursor for OVDB. Though both
the databases share many similarities, OVDB is modified to
consist only concrete and dis-ambiguous components and is
intended to apply for cloud computing use-cases also.

OVM Software Assessment Tool (OSAT): OSAT [17] is an
ontology based software assessment tool. It is built on top
of OVM. It uses all the vulnerability information present
in OVM and tries to measure the security of software
applications. It uses the CVSS scores of each vulnerability
present in NVD and computes total security measure for
particular software using a formula which sums up the
Common Vulnerability Scoring System (CVSS) scores of
all the vulnerabilities present in that software. OSAT is
really useful tool and one of the first of its kind. It brings
quantification for vulnerability assessment. Our Vulnerability
Assessment framework is also similar to OSAT and has some
interesting improvements like more user-friendly search.

Ontology Of Cybersecurity Operational Information: Is an
ontology [18] developed for identifying cybersecurity in-
formation in cloud computing. The basis of the ontology
is derived by applying cybersecurity operations that are
prevalent in regular non cloud computing environments and
applying them to cloud computing. The set of operations
identified are generalized out of the cybersecurity operations
performed by various cybersecurity practitioners in USA,
Japan and Korea. Ontology of Cybersecurity Operational
Information is Cloud agnostic and aims at assessing the
cloud environment for vulnerability assessment. In future
OVDB is going to combine the OVDB (which targets ap-
plication vulnerability) with the Ontology of Cybersecurity
Operational Information to create a complete end-to-end
cloud vulnerability assessment.

4. Vulnerability Analysis Framework
Our Vulnerability Analysis Framework consists of Se-

mantic Natural Language Processor (SNLP), Ontological
Vulnerability Database (OVDB), Attack Scripts Database,
and Attack Code Database.

Semantic Natural Language Processor (SNLP): The se-
mantic capabilities of OWL ontology aids in performing
semantic reasoning on the ontological vulnerability database
(OVDB). The user enters generic or specific information
about his application and the SNLP is responsible to search
through the OVDB and pull out the vulnerabilities that
match user’s keywords. Certain keywords by the user can
be used to reason semantically than just perform a keyword
search/match. The SNLP is capable of performing both
keyword search as well as semantic search.

Ontological Vulnerability Database (OVDB): OVDB is
ontology database of vulnerabilities listed in the National
Vulnerability Database. The OVDB includes lot of addi-
tional information about vulnerabilities like consequences,
countermeasures, attacks that reveal a particular vulnerability
etc. The ontology for OVDB is a modified version of the
ontology found in OVM. There is a one-to-one mapping
between OVDB and Attack Scripts database.

Attack Scripts Database: Attack Scripts Database is a
collection of scripts which can invoke attacks from the attack
code database. The scripts are customized for each attack
individually as the parameters required can vary greatly for
each attack. The scripts are mapped and a link to the script
is stored along with associated vulnerability in the OVDB.

Attack Code Database: Attack Code Database is a
database of attack codes primarily taken from Metasploit.
The scripts in the attacks scripts database invoke the code
in this database. This code will receive the parameters from
the attack script and launch attacks on the application.

The usage of the framework has been explained in Algo-
rithm 1. The vulnerability assessment starts by user typing

Int'l Conf. Security and Management | SAM'12 | 69

Fig. 2: OVDB Ontology

Algorithm 1 Working algorithm of OVDB framework
1: User enters keywords for the search
2: SNLP processes the user query and displays list of

related vulnerabilities
3: User selects the vulnerabilities he wants to test the

application for
4: User launches associated attacks for the vulnerabilities

selected
5: Attacks are performed on user’s application
6: A summary of attack results is posted for the user

in the keywords which describe the application that is to be
tested. This user query is submitted to the SNLP module.
SNLP dissects the query and fetches various vulnerabilities
related to the given keywords. These vulnerabilities will have
a unique identifier (CVE-ID), brief description, impact score
and a check box and launch attack button. After the user
selected all the vulnerabilities he want to test, he can click
Launch Attack button. This will invoke the associated attack
script(s) from the attack-script database. The attack scripts
will invoke necessary attack code from the attack code
database. After all the selected vulnerabilities are tested, the
user is presented with an analysis of what vulnerabilities
have been tested positive and what have been tested negative.

5. Framework Implementation
The framework we propose is built on top of the existing

state-of-art vulnerability assessment solutions such as OVM
and OSAT and extends them with subtle modifications.
Hence, to understand our framework, one will need a good
understanding of OVM and OSAT.

5.1 OVM and OSAT
OVM is a vulnerability database (populated using NVD)

which has a query interface. OVM can be queried using
standard query language SWRL [19]. These queries go
through the OVM and pulls out vulnerability information.
A user can write queries and infer results very efficiently
with SWRL. For example, if a user is looking for vulnera-
bilities in browsers, he doesn’t have to perform his search
for each browser individually. Instead, he can issue search
terms querying to look up for vulnerabilities associated with
applications like Firefox. The reasoner will automatically
infer which applications in the database fall in the category
(browser) as Firefox and pulls out all the vulnerabilities
in those applications. SWRL is a robust and expressive
language which allows users to perform customized and
efficient queries according to their needs.

OSAT is a Security Assessment tool built on top of OVM.
OSAT takes advantage of all the ontological properties of
OVM and reports comprehensive and qualitative measure-

70 Int'l Conf. Security and Management | SAM'12 |

Fig. 3: OVDB Framework Search Page (Mock)

ments of security. As the OVM, OSAT also follows the
SCAP protocol. OSAT populates its reports from the OVM
data. With OSAT we can enter a software product and ask the
tool to list it’s vulnerabilities. Alternatively we can provide
input such as type of vulnerability, scope of the effect and
nature of the vulnerability etc. Depending on user’s input
the OSAT infers the OVM database and builds a reports the
vulnerability information. We can also ask the OSAT to find
similar software along with security scores. This feature will
allow us to compare which software product is more secure
in a given product line.

5.2 OVDB Framework
Both OVM and OSAT are pioneering projects which

have shown the power of using ontologies for vulnerability
management. We build our OVDB vulnerability assessment
framework as an extension to the ideas of OVM and OSAT.

OVM and OSAT have reasoning and reporting which is
limited to the applications in the database. They can not
be used for user created applications. OVM and OSAT
reports details from the database depending on the user
query. These two tools report the vulnerabilities listed in the
database. They can not analyze the application and tell us
what vulnerabilities are present in the application right now.
This makes these tools static in nature, where we can only
look up existing information. The OVDB framework aims
at solving this problem. The framework includes a attack
code database which is mapped to the vulnerabilities in the
OVDB. Whenever a user wants to analyze his application,
he will use the framework to search for vulnerabilities. The
search module will report possible vulnerabilities. User can
select and launch attacks to test corresponding vulnerabili-
ties. This is explained in more detail below.

Int'l Conf. Security and Management | SAM'12 | 71

5.3 Ontology
We have developed an ontology for implementing OVDB.

It is a modified and extended version of OVM. Figure 2
shows the various entities and their relationships between
them. We have developed this ontology in Protégé(ontology
editor) [20] . All the concepts in the ontology are derived
from Thing (a generic entity signifying every child entity is
thing). At the top we have a wrapper entity for our ontology,
called the OVDB_Entity which signifies that every child
entity belongs to OVDB framework. Vulnerability is at the
centre of the ontology. It has relations with other entities like
IT_Product, Countermeasure, Consequence, CVSS_Metrics,
Attack and Attacker. The relationship of the Vulnerability
with these entities is described below:

Consequence signifies that every vulnerability has a con-
sequence. Having this information associated with the vul-
nerability helps us to search vulnerabilities using their con-
sequence. Many normal users may not technically classify a
vulnerability, but they can identify the consequence and use
it for searching the vulnerabilities.

Countermeasure entity contains the countermeasure for
a vulnerability. It gives information on how to patch the
associated vulnerability. This information will help users to
patch their software and get rid of the vulnerability.

CVSS_Metrics is the set of CVSS metrics for a particular
vulnerability. Which is a standard measurement for the
severity of the vulnerability. It also tells which of the secu-
rity properties of the information (confidentiality, integrity,
availability) is being effected by the vulnerability.

IT_Product is the class of IT Products which have a
particular vulnerability. This relation helps us to find vulner-
abilities not only within the application but also the complete
application stack. For e.g. if we are testing a Java Enterprise
Application running in an application server, we can give
the details of the application server to get the list of possible
vulnerabilities in the application stack.

Attacker is the entity which is interested in exploiting the
associated vulnerability. Having information about attacker
will help to protect the application more efficiently.

Attack is the type of the attacks that can exploit a
particular vulnerability. This allows user the flexibility to
search if a particular attack is possible on his application.
This relation will allow a quick evaluation of the application
against dangerous attacks.

5.4 Working
Figure 3 shows a sample search results page. The user

performs a search query by giving keywords describing
the application such as technology, framework, language
etc. (Java Vulnerabilities in the above example). The SNLP
searches for the keywords in the OVDB and reports a list
of vulnerabilities that are matching the user’s keywords.
User’s keywords will be used for semantic search. After
the search is done, the SNLP presents user with a list

of vulnerabilities. These results are pulled out of OVDB.
There is a check box after every vulnerability. The user
can either choose some or all of the vulnerabilities and
launch attacks corresponding to these vulnerabilities. User
can click on launch attack button for every attack he wants
to be performed upon the application. After the attacks are
performed on the application a detailed report is generated
on the security status of the application.

6. Future Work
In future we are planning to combine our ontology with

the Ontology Of Cybersecurity Operational Information to
provide a more robust and complete security in the cloud.
The OVDB ontology primarily targets vulnerability of ap-
plications where as Ontology Of Cybersecurity Operational
Information targets vulnerabilities of the cloud environment
itself. Therefore, by combining these two ontologies we can
achieve ontology for vulnerability assessment of the entire
cloud infrastructure (application and environment). Since
these two ontologies are cloud platform and application
agnostic, we can perform vulnerability assessment for any
application in any cloud.

7. Conclusions
In this paper we have proposed and successfully im-

plemented an Ontological Framework for Vulnerability as-
sessment in cloud. The framework is capable of assessing
the vulnerabilities in popular software as well as software
created by users. The framework can be installed in any
cloud platform and used for assessing any technology appli-
cations. The framework allows security professionals and as
well normal users to search through the database and assess
the software. The framework is equipped with a nice user
interface which makes the searching of vulnerabilities very
easy. The framework makes the tedious task of vulnerability
management and assessment easy and effective. With vul-
nerabilities growing exponentially everyday, this framework
will have a great use in present and future. As the framework
is built with the state-of-art security automation protocols, it
is both automotive and interoperable with other applications.

Acknowledgment
This work is supported in part by a grant from

NSF (#1128344) and the Net-centric Industry/University
Cooperative Research Center.

References
[1] Matt Bishop, David Bailey. A Critical Analysis of Vulnerability Tax-

onomies). http://www.cs.ucdavis.edu/research/tech-reports/1996/CSE-
96-11.pdf).

[2] Pascal Meunier. Classes of Vulnerabilities and Attacks. Technical
Article, 2009.

[3] Simon Hansman and Ray Hunt. A taxonomy of network and computer
attacks. Computers & Security, 24(1):31 – 43, 2005.

72 Int'l Conf. Security and Management | SAM'12 |

[4] www.wikipedia.org. Ontology (information science).
http://en.wikipedia.org/wiki/Ontology_(information_science).

[5] B. Chandrasekaran, John R. Josephson, and V. Richard Benjamins.
What are ontologies, and why do we need them? IEEE Intelligent
Systems, 14(1):20–26, January 1999.

[6] Jeffrey Undercoffer, Anupam Joshi, and John Pinkston. Modeling com-
puter attacks: An ontology for intrusion detection. In Giovanni Vigna,
Christopher Kruegel, and Erland Jonsson, editors, Recent Advances
in Intrusion Detection, volume 2820 of Lecture Notes in Computer
Science, pages 113–135. Springer Berlin Heidelberg, 2003.

[7] Yanxiang He, Wei Chen, Min Yang, and Wenling Peng. Ontology based
cooperative intrusion detection system. In Hai Jin, Guang Gao, Zhiwei
Xu, and Hao Chen, editors, Network and Parallel Computing, volume
3222 of Lecture Notes in Computer Science, pages 419–426. Springer
Berlin / Heidelberg, 2004. 10.1007/978-3-540-30141-7_59.

[8] F. Abdoli and M. Kahani. Ontology-based distributed intrusion de-
tection system. In Computer Conference, 2009. CSICC 2009. 14th
International CSI, pages 65 –70, oct. 2009.

[9] Andrew Simmonds Peter, Peter S, and Louis Van Ekert. An ontology
for network security attacks. In In Proceedings of the 2nd Asian
Applied Computing Conference (AACC04), LNCS 3285, pages 317–
323. Springer-Verlag, 2004.

[10] Cloud computing: An overview. Queue, 7:2:3–2:4, June 2009.
[11] Timothy Grance Wayne Jansen. Guidelines on security and privacy

in public cloud computing, Jan 2011.
[12] FIRST. Common Vulnerability Scoring System.

http://www.first.org/cvss.
[13] W3C. OWL Web Ontology Language . http://www.w3.org/TR/owl-

ref/.
[14] NIST. The Security Content Automation Protocol. http://scap.nist.gov.
[15] NIST. National Vulnerability Database. http://nvd.nist.gov.
[16] Ju An Wang and Minzhe Guo. Ovm: an ontology for vulnerability

management. In Proceedings of the 5th Annual Workshop on Cyber
Security and Information Intelligence Research: Cyber Security and
Information Intelligence Challenges and Strategies, CSIIRW ’09, pages
34:1–34:4, New York, NY, USA, 2009. ACM.

[17] Ju An Wang, Minzhe Guo, Hao Wang, Min Xia, and Linfeng Zhou.
Ontology-based security assessment for software products. In Proceed-
ings of the 5th Annual Workshop on Cyber Security and Information
Intelligence Research: Cyber Security and Information Intelligence
Challenges and Strategies, CSIIRW ’09, pages 15:1–15:4, New York,
NY, USA, 2009. ACM.

[18] Takeshi Takahashi, Youki Kadobayashi, and Hiroyuki Fujiwara. On-
tological approach toward cybersecurity in cloud computing. In Pro-
ceedings of the 3rd international conference on Security of information
and networks, SIN ’10, pages 100–109, New York, NY, USA, 2010.
ACM.

[19] W3C. SWRL, 2004. http://www.w3.org/Submission/SWRL/.
[20] ProtÃl’gÃl’ Team. What is ProtÃl’gÃl’-owl?

http://protege.stanford.edu/overview/protege-owl.html.

Int'l Conf. Security and Management | SAM'12 | 73

