
CHASM: Security Evaluation of Cache Mapping
Schemes

Fernando Mosquera, Nagendra Gulur, Krishna Kavi, Gayatri Mehta, and Hua
Sun

University of North Texas, Denton, Texas, USA??

Abstract. Cache side-channel attacks have become a significant secu-
rity threat across a variety of hardware architectures. By observing which
sets of a cache are accessed by the victim, the attacker gleans critical in-
formation about the address bits in the victim’s access, thereby revealing
portions of secret keys used by encryption algorithms (or other sensitive
information). Fundamentally, this ability to deduce information about
addresses given the accessed sets depends on knowing (or discovering)
how addresses are mapped to cache sets by hardware.
In this work, we evaluate the security of the various cache mapping
functions. Using an information-theoretic formulation, our framework
(denoted CHASM) estimates the number of address bits that are likely
leaked by different mapping schemes. Our analysis leads to several new
insights. One, all one-to-one schemes that map n set-index address bits
to 2n set-indices leak all n bits. Two, based on memory footprint, pro-
grams often leak several additional (viz., tag) bits (e.g., AES leaks 39
bits out of 42 at L2). Three, tag bits leak even with the use of address
space layout randomization (16 − 33 bits). Four, the use of huge pages
in order to reduce pressure on TLBs increases leakage (5 additional bits
on average). Since many of these techniques have opposing impact on
performance and security, we use a new security-delay ratio metric to
jointly evaluate mapping schemes for both performance and security.

1 Introduction

Hardware security attacks have become a significant threat to the confidentiality
and integrity of data, including data residing on personal devices [4, 26]. An
important sub-class of such security attacks is the cache side-channel attack1.
Here, the attacker exploits the behavior of cache space across multiple executing
programs. By observing the differences in the timings of memory accesses to
cache memory locations (cache lines or sets), the attacker draws conclusions
about the addresses accessed by the victim. In most current multi-core systems,
it is trivially easy to identify the address bits used as a cache set. Knowing
the address bits accessed by the victim leads to knowledge about secret keys
in cryptography applications [5]. This address-as-data side-channel has received

?? Contact authors at: fernandomosquera@my.unt.edu
1 In this paper we do not directly address attacks based on speculative execution or

techniques to mitigate them.

2 Authors Suppressed Due to Excessive Length

significant attention from both attack and countermeasure standpoints [6,18,21,
27,31].

Mitigation techniques can broadly be classified as partitioning or random-
ization based. In partitioning-based techniques (for e.g., see [13, 17, 34]), the
shared cache is partitioned such that each program uses its own cache partition
(typically a subset of cache ways) and accesses to one partition do not result in
any state changes to other partitions. While this method is effective at blocking
some timing-based attacks2, it brings a significant performance penalty: pro-
grams have varying demand for cache capacity and it is hard to impose efficient
static partitioning regimes. Dynamic regimes, on the other hand, can reintroduce
timing-based side-channels (e.g., see [34]) and generally require sophisticated
governance mechanisms in hardware.

In randomization-based methods, the hardware obfuscates how memory ad-
dresses map to cache sets, making it harder for the attacker to translate a timing
observation on a cache set to address bits used by the victim. Recent works (for
e.g., [20,24]) have proposed to use encryption mechanisms at the last-level cache
to map addresses to cache sets. Prior works (for e.g., see [9,15,16]) have also ex-
plored the use of non-trivial mapping functions for L1 and L2 caches, primarily
from a performance improvement goal: to redistribute memory addresses across
cache sets in order to reduce cache conflicts. Some of these schemes may also
improve security.

In this work, we propose CHASM – an information-theoretic measure to
evaluate the strength of various cache set mapping schemes. CHASM estimates
the amount of information about memory addresses that a mapping scheme
leaks: lower the estimated leakage, the stronger the security defense. Using this
formulation, we evaluate several different cache set mapping schemes for private
and shared caches. Using a combination of synthetic and real programs (SPEC,
and cryptography), we establish the following:

– Schemes that are 1:1 mappings of the n set index address bits to 2n sets,
leak all n address bits.

– Information leakage is higher in programs with smaller memory footprints–
higher order bits (tag bits, the bits not used for set index) do not vary
significantly. For e.g., the AES benchmark leaks 39 bits (out of 42) at L2
cache when using traditional Modulo scheme3 for mapping addresses to cache
sets due to its small (< 1MB) footprint.

– Even for programs with larger foot prints, the non-uniformity of accesses
to program addresses (see [22]) can leak information about the tag bits of
programs.

– Address space layout randomization (see [23]) helps but is not sufficiently
strong enough in reducing tag bit leakage. Despite using ASLR, programs
still leak anywhere between 16 to 33 (out of 42) bits.

2 Partitioning techniques do not prevent certain types of attacks [35]
3 Mapping schemes are discussed in Section 3 and workloads in Section 5

CHASM: Security Evaluation of Cache Mapping Schemes 3

– Interestingly, the use of huge pages to reduce TLBs and page table sizes,
actually results in higher leakage even for programs with large footprints.
We observe additional 5 bits of leakage bits (average) with 2MB pages.

– Using our proposed security-delay metric, we evaluate several mappings to
identify schemes that are both more secure and better performing compared
to the conventional baseline. Such metrics can be valuable in making quan-
titative decisions about performance-security trade-offs.

2 Background

Figure 1 provides an overview of a typical multi-core embedded processor archi-
tecture. Each core is provisioned with private L1 caches (L1 is split between data
and instruction) followed by a large shared L2 cache. Depending on hardware
scheduling and resource allocation, different programs share one or more caches.
Programs that are co-located on the same core share private as well as shared
caches. When hardware fine-grained scheduling techniques (such as Simultaneous
Multi-Threading)are used, programs can concurrently execute on the same core
sharing private data and instruction caches. Programs concurrently executing
on different cores share the L2 cache. Thus, simultaneously executing programs
affect (and are affected by) the performance of co-running programs: programs
suffer additional cache misses due to interference.

Fig. 1: Overview of Multi-core Embedded Processor

This performance variation caused by sharing of private or shared caches is
the basis of cache-based side-channel attacks. Depending on the level of access
to the system, the attacker may share a private cache or the last-level cache
with the victim. The attacker launches a covert attack on the victim by creating
an information leakage channel from the victim to the attacker. Such a channel
could be constructed in different ways based on system access, shared pages and
observability. For illustration, in the PRIME+PROBE technique [35], the attack
is deployed in three steps. In the first step, the attacker runs a spy process that
fills the shared cache with its own data. In the second step, it lets the victim
process execute. The victim brings its data to the shared cache, evicting some
of the spy’s cache blocks. In the third step, the attacker resumes the spy process
accessing its data a second time. Cache misses of spy data (observed by timing

4 Authors Suppressed Due to Excessive Length

the accesses) will indicate that the victim accessed the same set. This information
is sufficient to reveal a portion of the address that the victim accessed.

In addition to PRIME+PROBE, several other attacks exist, such as FLUSH
& RELOAD [31], EVICT & TIME [11] and so on. Various works have demon-
strated the use of different levels of caches to create covert side channels [18]. At
the heart of all of these attacks is the ability for the attacker to determine bits
of the address accessed by the victim given the set that was accessed. The vast
majority of existing hardware systems use the simple modulo mapping scheme to
map addresses to cache sets: for a cache with N = 2n sets (organized as blocks
of size B = 2b bytes), the cache controller uses the n bits [b : b + n − 1] of the
address to determine the set index. Figure 2 shows how the cache controller uses
the a address bits to obtain the block offset, the set index and tag. Under this
mapping scheme, if the attacker knows the set index, then (s)he knows the cor-
responding address bits. Despite this vulnerability, this scheme is the prevalent
mapping scheme given its simplicity and low-cost of implementation.

Fig. 2: Cache Set Mapping using the Modulo Mapping Scheme

Researchers have proposed newer set mapping schemes that use some ad-
ditional address bits, and applying a simple combinatorial function on these
selected bits to compute a new set index. While most prior schemes were de-
signed for higher performance, (by distributing the requests more evenly across
cache sets to reduce cache misses), new schemes [20,24] have been proposed us-
ing a cipher to create pseudo-random hash maps from addresses to cache sets.
In our evaluations we assume that the same address mapping is used for all
processes. In a future study we will explore the use of different mappings for
different processes and modifying mappings for a given process periodically.

Thus, given the central role that cache set mapping schemes play in miti-
gating cache side-channel attacks, our work proposes an information-theoretic
framework for evaluating the security of cache set mapping schemes.

3 Evaluated Cache Set Mappings

In this section, we describe the various set mapping schemes that we explored.
In addition to the modulo mapping scheme covered in the previous section (Fig-
ure 2), we evaluate several representative schemes that are summarized in Ta-
ble 1.We selected a representative set of mappings used in current systems or
proposed by recent research. For the purpose of describing these techniques we
will assume 64-byte cache blocks.

The Rotate-3 mapping uses the traditional n set index address bits a(n+5) :
a6 and rotates these bits by three bit positions to produce the new set index
([a8, a7, a6, an+5 : a9]).

CHASM: Security Evaluation of Cache Mapping Schemes 5

Scheme Name Scheme Description Uses
Tag
Bits?

Usage

Rotate-3 [15] Rotate-right the set-index address bits by 3 bit positions No L1, L2
XOR [15] XOR the set-index address bits with least significant tag bits

of address
Yes L1, L2

Rotate-then-
XOR

Rotate-right the set-index address bits by 1 bit position, and
XOR the result with tag bits of address

Yes L1, L2

Square-then-
XOR

Square the tag bits of the address, and XOR the middle n bits
of result with the n set-index address bits

Yes L1, L2

Odd-Multiplier-
7 [15]

Multiply the tag bits by 7, add to set-index address bits Yes L1, L2

Intel-Slice [32] See description in [32]. Two-stage hash of cache slice. Yes L2
CEASER Encryption-based mapping scheme. See [24]. Yes L2

Table 1: Overview of Cache Set Mapping Schemes

The XOR scheme uses n bits of address from the cache tag portion to XOR
them with the set index address bits. The XORed result is used as the set index.
The use of the tag bits acts as a pseudo-randomizer resulting in obfuscating
the mapping of addresses to cache sets. In practice, this technique introduces
hardware implementation challenges at L1 as the use of virtual address tag bits
for indexing has to be reconciled with coherence messages sent out using phys-
ical addresses. The tag bits are not guaranteed to be the same between virtual
and physical addresses requiring some additional metadata to be maintained for
correctly indexing into the L1 cache. However, this scheme is known to work
effectively from a performance point of view as it distributes addresses more
evenly across cache sets. The Rotate-then-XOR scheme first rotates the set in-
dex address bits and then XORs the rotated bits with the tag bits to compute
the set index. The Square-then-XOR scheme first squares the tag address bits,
then extracts the n bits in the middle of the result to XOR them with the set
index address bits. While the squaring operation is hardware-expensive, if the
number of bits is small (e.g., in the L1 cache) or the operation is invoked infre-
quently (for e.g., at lower-level caches), the overhead of this operation becomes
tolerable4. The Odd-Multiplier-7 scheme multiplies the tag bits by 7, and adds
the result to the set index address bits. Modulo 2n of the result is used as the
set-index.

The Intel-Slice scheme is borrowed from Intel’s implementation for the last-
level cache in Sandy Bridge as outlined in [32]. In this scheme, the L2 is viewed
as a collection of cache slices, and the computation of the slice ID is done using
a two-stage function of the input address. CEASER [24] proposes the use of
an encryption cipher implemented as a 4-stage Feistel network to translate the
incoming physical address into an L2 cache set index5.

We note that virtual addresses are used in mapping schemes used in the
L1D cache since the majority of L1 caches are virtually-indexed while physical
addresses are used in the L2 cache since L2 caches are almost always physically-
indexed.

4 For small bit counts, a table lookup can be used.
5 In the original work, this scheme was applied to the shared L3 cache.

6 Authors Suppressed Due to Excessive Length

4 CHASM Formulation

We first describe how our formulation can be used followed by a description of
the information leakage estimation technique.

4.1 Use Model

CHASM is not proposing a specific cache side-channel attack or a countermea-
sure. Instead, it provides a framework for assessing the strength of various cache
mapping schemes in mitigating the disclosure of victim address bits. The typical
use of CHASM is for the design and evaluation of new cache mapping schemes.
Hardware architects can explore various mapping schemes (such as those de-
scribed in Section 3) to identify the most secure schemes. Algorithm and OS
developers can explore different software implementation techniques for how se-
cure/vulnerable they are from a cache-based side-channel attack perspective.

CHASM formulation estimates the leakage of the victim’s address bits given
that the attacker knows which sets are being accessed by the victim. Tools such
as the PIN tool for ARM [10] or Intel [19] can be used to collect a trace of
a program’s memory accesses. These traces are fed to a cache simulator that
estimates information leakage using the CHASM formulation described next.
The cache simulator implements the desired cache mapping schemes and provides
statistical estimates of which address bits are leaked and the likelihood that a
leaked bit is a 1 or a 0.

4.2 Information Leakage Estimation

The attacker’s goal is to accurately predict the address bits used by the victim
given that the attacker knows which set was accessed. We use an information-
theoretic metric to estimate this leakage. An address bit ai is estimated to be
leaked with probability 1, if every address that maps to a given set S in the
victim program has the same value for bit ai (either always zero or always one).
Intuitively, this is stating the fact that an address bit value remains constant for
all addresses that map to a given set, and an attacker can find the value of an
address bit if he knows the set used. Additionally, correlations between address
bits also reveal information. For instance, if address bit aj is 1 whenever address
bit ai is 0, then knowing ai, aj can be predicted.

While the concept of mutual information (see [14, 29]) is widely used to
define leakage in the presence of correlations, its computational complexity is
high requiring multi-dimensional conditional probabilities to be estimated6. We
define a simpler metric that uses only pair-wise correlations between address bits.
Our metric computes both the individual per-bit leakage as well as correlated
leakage in order to estimate the effective leakage.

Individual Leakage: If we denote the probability that ai has a value of 1
when it maps to set S as pi = prob(ai = 1|S), then the leakage of information
regarding ai is related to the entropy ei of the bit, given by:

ei = −pilog(pi)− (1− pi)log(1− pi) (1)

6 In our case, leakage in bit i would depend on all other 40–50 bits requiring 240 − 250

probabilities to be estimated.

CHASM: Security Evaluation of Cache Mapping Schemes 7

When pi is either close to 0 or 1, then ei is close to 0 (very small uncertainty).
On the other hand, when pi is close to 0.5, then ei is close to 1. This individual
bit leakage ili is defined:

ili = 1− ei (2)

A high value of ili indicates that by simply knowing the set, bit ai can be
predicted.

Correlated Leakage: In almost all applications, lower-order address bits
toggle more often than higher-order bits. Thus we compute correlations of bit
aj with all other previous bits aj−1 through a6

7. Let SAME(i, j) denote the
number of times that ai and aj have the same values among addresses mapping
to set S. Let DIFF (i, j) denote the number of times that ai and aj have different
values. The correlation of aj with ai (j > i) is defined:

cj,i = 1− min(SAME(i, j), DIFF (i, j))

max(SAME(i, j), DIFF (i, j))
(3)

If the bits are strongly correlated or anti-correlated, then cj,i is close to 1. Thus
we define the correlated leakage clj,i of j due to i as:

clj,i = eli × cj,i (4)

where eli is the effective leakage of bit i defined in Equation 5. The correlated
leakage of aj due to ai is high if ai has high effective leakage and aj has high
correlation with ai. We now define the effective leakage of aj as:

elj = max(ilj , clj,j−1, clj,j−2, .., clj,6) (5)

Effective leakage of aj is set to the maximum of its individual leakage, and its
correlated leakages with preceding bits aj−1 through a6. If a bit possesses strong
(anti-) correlation with a preceding bit or suffers from high individual leakage,
then its effective leakage is high.

We express the total leakage as a sum of the effective leakage contributions
from all the relevant address bits: set-index bits and tag bits. This is given by:

L(S) =
∑
i

eli (6)

where the summation is over all set index and tag address bits.
Ideally, the most secure mapping scheme leaks 0 bits of address information,

while the weakest scheme leaks all tag and set index bits. For a given cache, the
total information leaked is estimated as a weighted-average across all the sets,
where p(S) is the probability of an address mapping to set S.

LAvg
Cache =

∑
s

L(s)p(s) (7)

7 We stop at a6 as bits a0 through a5 are block offset bits that have no impact on
cache mapping. In this paper we assume 64-byte cache blocks.

8 Authors Suppressed Due to Excessive Length

The weighing by p(S) ensures that sets that have received very few accesses do
not skew the overall cache-level leakage metric. This also takes program charac-
teristics into account: if a program exhibits a non-uniform use of cache sets, then
that is useful information to the attacker and must be included in the metric.

We use this formulation to compare various cache set mapping schemes. If a
set mapping scheme results in lower average information leakage (LAvg

cache), then
it is deemed to be more secure scheme.

4.3 Security-Delay Measure

Neither performance nor security alone is a useful measure. High performance
under weak security is not desirable, and strong security with significant per-
formance penalties is unacceptable. Therefore, we propose a new cache metric:
security-delay ratio (denoted SD), defined as:

SDCache =
(t + n)

Lavg
Cache

× 1

CPI
(8)

This is a higher-is-better metric: lower CPI (Cycles Per Instruction) and lower
leakage contribute to higher values of the metric. The (t+n) term represents the

maximum possible leakage and is used to normalize the security measure LAvg
Cache.

For example, if two schemes S1 and S2 have CPIs 2.0 and 1.5 with respective
leakages of 20 and 30 bits (out of a maximum of 42 8), then their respective
SD metrics are 1.05 and 0.933 suggesting that S2 perhap loses out on security
a little too much (even though it is higher in terms of performance).

5 Experimental Methodology

We use a trace-based methodology for evaluating CHASM. Memory access traces
of various workloads are collected using PIN [19] tool. These are virtual addresses
that are suitable for L1 cache studies (L1 is VIPT - Virtually Indexed Physically
Tagged). We also obtain corresponding physical addresses during the PIN tool
execution by using a combination of Linux /proc/pagemap and /proc/kpageflags
utilities [2]. Physical addresses are used for L2 cache studies (L2 is PIPT -
Physically Indexed Physically Tagged). As is standard practice, we collect traces
after skipping an initial warm-up period.

These traces are injected into Moola [25] - a multi-core, cache hierarchy
simulator. The cache simulator is configured to match the Snapdragon Series
8 [7] cache configuration (L1D: 32KB 4-way, L2: 2MB, 8-way, all caches use
64B blocks). The cache simulator is modified to support all the cache mapping
schemes listed in Table 1. The simulator is also enhanced to measure information
leakage defined in Equations 7 and 8. Finally, the simulator reports the relevant
statistics – cache performance, and information leakage.

Our workloads comprise synthetic programs, SPEC [12] benchmarks and
off-the-shelf cryptography programs. Synthetic programs access consecutive el-
ements of an array in a loop. By varying the size of the array, we observe the

8 As stated previously, we assume a 64-byte cache line size, and 48-bit addresses.

CHASM: Security Evaluation of Cache Mapping Schemes 9

impact of memory footprint on security. We explore 6 different sizes and the
corresponding workloads are denoted synth 16KB, synth 128KB, synth 1MB,
synth 8MB, synth 64MB and synth 512MB. We use a subset of SPEC bench-
marks that are memory-intensive: bwaves, bzip2, cactusADM, GemsFDTD,
leslie3d, libquantum, milc, mcf, soplex and zeusmp. Our cryptography programs
include AES, RSA and SHA. Traces collected from these programs are fed to
the cache simulator and simulated for 10 billion memory accesses.

6 Results

We first evaluate L1D mapping schemes for their security using synthetic, SPEC
and Cryptography benchmarks, followed by an evaluation of L2 mapping schemes.

6.1 Security of L1D Cache Mapping Schemes

Figure 3 plots the average information leakage (LAvg
Cache, refer Equation 7) from all

address bits observed in synthetic programs across all the evaluated L1 mapping
schemes. These results clearly demonstrate that leakage reduces as memory

S y n t h
_ 1 6

K B

S y n t h
_ 1 2

8 K B

S y n t h
_ 1 M

B

S y n t h
_ 8 M

B

S y n t h
_ 6 4

M B

S y n t h
_ 5 1

2 M B
1 2

2 0

2 8

3 6

1 6

2 4

3 2

4 0

A d d r e s s B i t s
L e a k a g e

S y n t h e t i c W o r k l o a d

 M o d u l o R o t a t e - 3 X O R R o t a t e - t h e n - X O R S q u a r e - t h e n - X O R O d d - M u l t i p l i e r - 7

Fig. 3: Leakage of Address bits in L1D on Synthetic Programs

footprint increases. Programs with smaller memory footprints leak many more
bits (40 in synth 16KB) compared to programs with higher footprints (16 in
synth 512MB). This is due to less variation in the address bit values in programs
with smaller footprints. These results also reveal that every mapping scheme that
uses only the set-index portion of address bits to map the 2n possible address
bits to 2n sets in a 1-1 function is weak : it reveals all n bits.

Next, we evaluate the leakage of information for selected SPEC and Cryp-
tography workloads. Figure 4 plots this leakage across all mapping schemes. The
first two schemes (that use only the set-index address bits for indexing) leak
significantly more bits compared to schemes that leverage tag address bits for
indexing. In particular, AES and SHA encryption programs show high leakage.

10 Authors Suppressed Due to Excessive Length

This is attributable to their small memory footprints and lack of variation in
tag bits, thereby enabling attackers to accurately estimate several address bits.
Even if encryption routines are integrated into larger applications, as they are
typically invoked in response to encryption requests, knowledgeable attackers
can isolate these portions of code execution and attack them.

A E S R S A S H A
b w a v e

s
b z p

2

c a c
t u s _

A D M

G e m s F D T D
l e s l

i e 3 D

l i b q
u a n

t u m m c f m i l c
s o p

l e s
z e u

s m p
1 2
1 6
2 0
2 4
2 8
3 2
3 6
4 0

A d d r e s s
B i t s L e a k a g e

S P E C a n d C r y p t o g r a p h y W o r k l o a d s

 M o d u l o R o t a t e - 3 X O R R o t a t e - t h e n - X O R S q u a r e - t h e n - X O R O d d - M u l t i p l i e r - 7

Fig. 4: Leakage of Address bits in L1D on SPEC and Crypto Benchmarks

6.2 Leakage Under ASLR

Address Space Layout Randomization (ASLR, see [23]) is an OS feature that
offers memory protection against attacks by randomizing the base addresses of
various program sections such as the stack, heap and text. Across different runs
of the same process, the OS places the process sections at different locations
thereby making it harder for attackers to reliably determine addresses used by
the victim via cache side-channel attacks.

In order to test the effectiveness of ASLR and to identify information leakage
under ASLR, we ran our synthetic workloads 50 times each and obtained a
merged trace for each workload9. By merging the address accesses from different
runs of the same workload, we are able to capture the randomness introduced
by ASLR and measure the resulting reduction in leakage.

Figure 5 reports our findings on the L1D cache by plotting the reduction in
leakage by ASLR. Observe that this is a higher-is-better graph. The numbers
above the bars are the absolute leakage values with ASLR. Overall, ASLR helps
reduce the leakage of address bits. In particular, mapping schemes that use
tag bits (last four bars for each workload) reduce leakage suggesting that a
combination of such a mapping scheme operating under ASLR is effective. This
is a positive result from a security standpoint – especially for programs with very
small footprints. However, ASLR does not completely prevent leakage. As the

9 SPEC and Cryptography workloads exhibit similar trends and for brevity, we omit
their details here.

CHASM: Security Evaluation of Cache Mapping Schemes 11

3 3
2 8

2 7
2 5

2 5

2 4

3 3
2 8

2 7
2 5

2 5

2 4

2 3 1 7

1 6

1 6

1 6

1 6

2 3
1 7

1 6

1 6

1 6

1 6

2 4

1 8

1 7

1 7

1 7

1 7

2 4 1 7

1 6

1 6

1 6

1 6

S y n t h
_ 1 6

K B

S y n t h
_ 1 2

8 K B

S y n t h
_ 1 M

B

S y n t h
_ 8 M

B

S y n t h
_ 6 4

M B

S y n t h
_ 5 1

2 M B

2

6

1 0

1 4

1 8

0

4

8

1 2

1 6

A d d r e s s B i t s
L e a k a g e

D i f f e r e n c e

S y n t h e t i c W o r k l o a d

 M o d u l o R o t a t e - 3 X O R R o t a t e - t h e n - X O R S q u a r e - t h e n - X O R O d d - M u l t i p l i e r - 7

Fig. 5: Reduction in Leakage with ASLR

numbers above the bars indicate, in small workloads (e.g., synth 16KB) despite
ASLR, 15− 30 bits leak.

This experiment reveals that a combination of including tag bits in computing
set indices, coupled with the use of ASLR can provide a secure mapping scheme
preventing leakage of set-index bits. At the same time, ASLR is not strong
enough to prevent leakage of several tag bits and a stronger scheme is needed to
achieve this.

6.3 Security of L2 Cache Mapping Schemes

Figure 6 plots the leakage of the address bits in SPEC and Cryptography work-
loads10. These results are similar to synthetic workloads. Schemes incorporating
the use of tag bits generally perform significantly better than schemes that do
not. Cryptography workloads – due to their small footprints – leak more bits
under all schemes (AES leaks a total of 39 bits – set-index+tag – under Modulo).

Impact of Page Size on Leakage Large physical pages [1, 3] (also called
superpages, using page sizes of 2MB through 1GB) have been supported as a way
to allocate and manage large contiguous chunks of physical memory efficiently.
Large pages reduce TLB (Translation Lookaside Buffer) pressure and page-walk
penalty by replacing many individual small page entries in a page table by a
single entry. However, use of large pages comes with a security side-effect: all
addresses that map to a large physical page have the same higher-order bits
as compared to addresses that map to different non-contiguous small physical
pages. Thus, using large pages can result in greater address bit leakage. In order
to observe this, we compared two runs of a synthetic program – huge pages
allocates and uses huge (2MB in our experiments) pages, while small pages uses

10 For lack of space, we omitted the Rotate-3 scheme as its leakage is exactly the same
as that of Modulo

12 Authors Suppressed Due to Excessive Length

small (4KB) pages. Figure 7 compares leakage of tag address bits in the L2
cache. Across all the schemes, the use of huge pages results in leaking several
additional address bits (about 5 on average in our experiments).

A E S R S A S H A
b w a v e

s
b z p

2

c a c
t u s _

A D M

G e m s F D T D
l e s l

i e 3 D

l i b q
u a n

t u m m c f m i l c
s o p

l e s
z e u

s m p
1 2
1 6
2 0
2 4
2 8
3 2
3 6
4 0

L e a k a g e
i n

A d d r e s s
B i t s

S P E C a n d C r y p t o g r a p h y W o r k l o a d s

 M o d u l o X O R R o t a t e - t h e n - X O R S q u a r e - t h e n - X O R O d d - M u l t i p l i e r - 7 I n t e l - S l i c e C E A S E R

Fig. 6: Leakage of Address bits in L2 on SPEC, Cryptography Workloads

M o d u
l o

R o t a t
e - 3 X O R

R o t a t
e - t h

e n - X
O R

S q u a
r e - t

h e n
- X O R

O d d - M
u l t i p

l i e r -
7

I n t e
l - S l i c e

C E A S E R

1 5

2 0

2 5

3 0

3 5

4 0

A d r e s s e s
L e a k a g e

M a p p i n g S c h e m e

 S m a l l P a g e s H u g e P a g e s

Fig. 7: Impact of Huge Pages

6.4 Security-Delay Measure

We use the metric SDCache defined in Equation 8 to study the joint effect of
each scheme on performance and security. Figure 8 plots the percentage change
in SDL1D w.r.t the modulo baseline for SPEC and Crypto workloads for four
mapping schemes on L1D. In workloads such as GemsFDTD, while XOR im-
proves SDL1D by as much as 49%, Square-then-XOR improves by only about
26%. On average (geometric mean), the XOR scheme performs the best. This
evaluation shows that the SDCache metric is effective at capturing the joint per-
formance & security impact of cache mapping schemes and can be used as a
reliable indicator for future evaluations.

CHASM: Security Evaluation of Cache Mapping Schemes 13

The above results and discussion indicate that hardware-wide static cache
mapping schemes are leaky. Set-index bits are almost entirely revealed unless
tag-based methods are used. Even then leakage still exists in smaller programs.
Considerable leakage of tag bits occurs in all schemes even when ASLR is used.
Large physical pages tend to leak even more. Large cache sizes also result in
higher leakage. Our findings motivate the need for incorporating stronger map-
ping schemes that are either application-specific, or dynamic or both.

A E S R S A
b w a v e

s
b z p

2

c a c
t u s _

A D M

G e m s F D T D
l e s l

i e 3 D

l i b q
u a n

t u m m c f m i l c
s o p

l e s
z e u

s m p
A v e r a

g e
0

1 0

2 0

3 0

4 0

5 0

6 0

S D
M e t r i c

 (% C h a n g e)

S P E C a n d C r y p t o g r a p h y W o r k l o a d s

 X O R R o t a t e - t h e n - X O R S q u a r e - t h e n - X O R O d d - M u l t i p l i e r - 7

Fig. 8: L1D Security-Delay Ratio Metric of SPEC and Cryptography Workloads

7 Related Works

Cache set mappings have received attention mainly from a performance perspec-
tive. These studies focus solely on performance and do not consider their security
implication. The work in Kavi et al [15] provides a comprehensive comparison
of several mapping schemes used in low-associativity caches. The work in Gi-
vargis [9] explores mapping schemes that improve performance by considering
correlations among address bits. Kharbutli et al [16] explore the prime-modulo
and prime-displacement mapping functions.

The work in [24] explores the use of encryption-based mapping of physical
addresses to LLC sets with emphasis on addressing security. In this work, the
authors not only propose encryption but also re-encrypt and migrate cache blocks
periodically to prevent the attacker from learning the encrypted mapping. Intel
uses an undocumented hash function of the physical address bits to compute
the last-level cache slice index. The details of this hash function were revealed
in [20]. We evaluate these schemes in our work. ScatterCache [30] proposes
a per-process keyed mapping scheme. Per-process mappings make inter-process
attacks difficult but due to the mapping hardware overhead, they are feasible
only at low-level caches. In contrast to these works, our work is not another cache
mapping (or address randomization) scheme: rather, it provides a framework to
evaluate the security of mapping schemes and highlights the role of program
characteristics such as memory footprint in determining programs’ vulnerability
to microarchitectural side-channel attacks.

14 Authors Suppressed Due to Excessive Length

Address space layout randomization (ASLR) [23] was introduced by Linux
as a guard against address-based attacks by randomizing the bases of text, stack,
heap and mmap sections. It has however been shown that ASLR does not offer
a strong defense [28].

Orthogonal to CHASM, Zankl et al [33] provide a framework for detecting
leakage of modular exponentiation software via instruction caches. The work
in Doychev et al [8] proposes CacheAudit - a framework for automatic static
analysis of cache side channels. CHASM differs from this framework in that
CHASM is driven by address traces factoring in aspects of the run-time system:
physical addresses, use of large pages, ASLR and so on.

8 Conclusions
This work presented CHASM – a framework for evaluating strength of the se-
curity of cache mapping schemes. We evaluated several schemes at L1 and L2
caches under different system conditions (ASLR, large pages). Our evaluations
reveal several insights about the vulnerabilities of cache mappings, including
that smaller memory footprints leak more information, that non-uniformity of
accesses leaks more information, that ASLR is only marginally effective and that
“huge” pages leak more information. These findings indicate that more sophisti-
cated techniques for hiding address mapping to cache sets are needed. Moreover,
obfuscating techniques at the OS level as well as application/algorithm level are
needed to increase the strength of countermeasures against side-channel attacks.

References

1. “Huge pages - the linux kernel archives.” [Online]. Available:
https://www.kernel.org/doc/Documentation/vm/hugetlbpage.txt

2. “Pagemap, from the userspace perspective.” [Online]. Available:
https://www.kernel.org/doc/Documentation/vm/pagemap.txt

3. “Transparent hugepage support.” [Online]. Available:
https://www.kernel.org/doc/Documentation/vm/transhuge.txt

4. J. A. Ambrose, R. G. Ragel, D. Jayasinghe, T. Li, and S. Parameswaran, “Side
channel attacks in embedded systems: A tale of hostilities and deterrence,” in
Sixteenth International Symposium on Quality Electronic Design, March 2015, pp.
452–459.

5. D. J. Bernstein, “Cache-timing attacks on aes,” Tech. Rep., 2005.
6. J. Bonneau and I. Mironov, “Cache-collision timing attacks against aes,” in

Proceedings of the 8th International Conference on Cryptographic Hardware and
Embedded Systems, ser. CHES’06. Berlin, Heidelberg: Springer-Verlag, 2006, pp.
201–215. [Online]. Available: http://dx.doi.org/10.1007/11894063 16

7. J. Doweck, W. Kao, A. K. Lu, J. Mandelblat, A. Rahatekar, L. Rappoport,
E. Rotem, A. Yasin, and A. Yoaz, “Inside 6th-generation intel core: New microar-
chitecture code-named skylake,” IEEE Micro, vol. 37, no. 2, pp. 52–62, Mar 2017.

8. G. Doychev, D. Feld, B. Köpf, L. Mauborgne, and J. Reineke, “Cacheaudit:
A tool for the static analysis of cache side channels,” in Proceedings
of the 22Nd USENIX Conference on Security, ser. SEC’13. Berkeley,
CA, USA: USENIX Association, 2013, pp. 431–446. [Online]. Available:
http://dl.acm.org/citation.cfm?id=2534766.2534804

CHASM: Security Evaluation of Cache Mapping Schemes 15

9. T. Givargis, “Improved indexing for cache miss reduction in embedded systems,”
in Proceedings of the 40th Annual Design Automation Conference, ser. DAC ’03,
2003. [Online]. Available: http://doi.acm.org/10.1145/775832.776052

10. K. M. Hazelwood and A. Klauser, “A dynamic binary instrumentation engine
for the ARM architecture,” in Proceedings of the 2006 International Conference
on Compilers, Architecture, and Synthesis for Embedded Systems, CASES 2006,
Seoul, Korea, October 22-25, 2006, S. Hong, W. H. Wolf, K. Flautner, and
T. Kim, Eds., 2006. [Online]. Available: https://doi.org/10.1145/1176760.1176793

11. Z. He and R. B. Lee, “How secure is your cache against side-channel attacks?”
in Proceedings of the 50th Annual IEEE/ACM International Symposium on
Microarchitecture, ser. MICRO-50 ’17. New York, NY, USA: ACM, 2017, pp.
341–353. [Online]. Available: http://doi.acm.org/10.1145/3123939.3124546

12. J. L. Henning, “Spec cpu2006 benchmark descriptions,” SIGARCH Comput.
Archit. News, vol. 34, no. 4, pp. 1–17, Sep. 2006. [Online]. Available:
http://doi.acm.org/10.1145/1186736.1186737

13. Intel, “Introduction to Cache Allocation Technology in the Intel® Xeon®
processor E5 v4 family,” 2016. [Online]. Available: https://software.intel.com/en-
us/articles/introduction-to-cache-allocation-technology

14. I. Issa, A. B. Wagner, and S. Kamath, “An operational approach to
information leakage,” CoRR, vol. abs/1807.07878, 2018. [Online]. Available:
http://arxiv.org/abs/1807.07878

15. K. Kavi, I. Nwachukwu, and A. Fawibe, “A comparative analysis of
performance improvement schemes for cache memories,” Comput. Electr.
Eng., vol. 38, no. 2, pp. 243–257, Mar. 2012. [Online]. Available:
http://dx.doi.org/10.1016/j.compeleceng.2011.12.008

16. M. Kharbutli, K. Irwin, Y. Solihin, and J. Lee, “Using prime numbers
for cache indexing to eliminate conflict misses,” in Proceedings of the 10th
International Symposium on High Performance Computer Architecture, ser. HPCA
’04. Washington, DC, USA: IEEE Computer Society, 2004, pp. 288–. [Online].
Available: https://doi.org/10.1109/HPCA.2004.10015

17. V. Kiriansky, I. Lebedev, S. Amarasinghe, S. Devadas, and J. Emer, “Dawg:
A defense against cache timing attacks in speculative execution processors,”
in Proceedings of the 51st Annual IEEE/ACM International Symposium on
Microarchitecture, ser. MICRO-51. Piscataway, NJ, USA: IEEE Press, 2018, pp.
974–987. [Online]. Available: https://doi.org/10.1109/MICRO.2018.00083

18. F. Liu, Y. Yarom, Q. Ge, G. Heiser, and R. B. Lee, “Last-level cache side-channel
attacks are practical,” in Proceedings of the 2015 IEEE Symposium on Security
and Privacy, ser. SP ’15. Washington, DC, USA: IEEE Computer Society, 2015,
pp. 605–622. [Online]. Available: https://doi.org/10.1109/SP.2015.43

19. C.-K. Luk, R. Cohn, R. Muth, H. Patil, A. Klauser, G. Lowney, S. Wallace,
V. J. Reddi, and K. Hazelwood, “Pin: Building customized program analysis
tools with dynamic instrumentation,” in Proceedings of the 2005 ACM SIGPLAN
Conference on Programming Language Design and Implementation, ser. PLDI
’05. New York, NY, USA: ACM, 2005, pp. 190–200. [Online]. Available:
http://doi.acm.org/10.1145/1065010.1065034

20. C. Maurice, N. Scouarnec, C. Neumann, O. Heen, and A. Francillon, “Reverse
engineering intel last-level cache complex addressing using performance counters,”
in Proceedings of the 18th International Symposium on Research in Attacks,
Intrusions, and Defenses - Volume 9404, ser. RAID 2015. New York, NY,
USA: Springer-Verlag New York, Inc., 2015, pp. 48–65. [Online]. Available:
http://dx.doi.org/10.1007/978-3-319-26362-5-3

16 Authors Suppressed Due to Excessive Length

21. M. Mushtaq, A. Akram, M. K. Bhatti, R. N. B. Rais, V. Lapotre, and G. Gog-
niat, “Run-time detection of prime + probe side-channel attack on aes encryption
algorithm,” in 2018 Global Information Infrastructure and Networking Symposium
(GIIS), Oct 2018, pp. 1–5.

22. I. Nwachukwu, K. Kavi, F. Ademola, and C. Yan, “Evaluation of techniques to
improve cache access uniformities,” in 2011 International Conference on Parallel
Processing, Sep. 2011, pp. 31–40.

23. Pax, “Address space layout randomization ASLR,” 2003. [Online]. Available:
http://pax.grsecuritynet/docs/aslr.txt

24. M. K. Qureshi, “CEASER: Mitigating conflict-based cache attacks via
encrypted-address and remapping,” in Proceedings of the 51st Annual
IEEE/ACM International Symposium on Microarchitecture, ser. MICRO-51.
Piscataway, NJ, USA: IEEE Press, 2018, pp. 775–787. [Online]. Available:
https://doi.org/10.1109/MICRO.2018.00068

25. C. Shelor and K. Kavi, “Moola: Multicore cache simulator,” in 30th International
Conference on Computers and Their Applications (CATA-2015), 2015.

26. D. Trilla, C. Hernandez, J. Abella, and F. Cazorla, “Cache side-channel attacks
and time-predictability in high-performance critical real-time systems,” 06 2018,
pp. 1–6.

27. E. Tromer, D. A. Osvik, and A. Shamir, “Efficient cache attacks on aes, and
countermeasures,” J. Cryptol., vol. 23, no. 1, pp. 37–71, Jan. 2010. [Online].
Available: http://dx.doi.org/10.1007/s00145-009-9049-y

28. P. Umbelino, “Aslr cache attack defeats address space layout randomization,”
2017. [Online]. Available: https://hackaday.com/2017/02/15/aslrcache-attack-
defeats-address-space-layout-randomization/

29. I. Wagner and D. Eckhoff, “Technical privacy metrics: a systematic survey,” CoRR,
vol. abs/1512.00327, 2015. [Online]. Available: http://arxiv.org/abs/1512.00327

30. M. Werner, T. Unterluggauer, L. Giner, M. Schwarz, D. Gruss, and S. Mangard,
“Scattercache: Thwarting cache attacks via cache set randomization,” in 28th
USENIX Security Symposium, USENIX Security 2019, Santa Clara, CA, USA,
August 14-16, 2019, N. Heninger and P. Traynor, Eds., 2019. [Online]. Available:
https://www.usenix.org/conference/usenixsecurity19/presentation/werner

31. Y. Yarom and K. Falkner, “Flush+reload: A high resolution, low noise,
l3 cache side-channel attack,” in Proceedings of the 23rd USENIX Con-
ference on Security Symposium, ser. SEC’14, 2014. [Online]. Available:
http://dl.acm.org/citation.cfm?id=2671225.2671271

32. Y. Yarom, Q. Ge, F. Liu, R. B. Lee, and G. Heiser, “Mapping the in-
tel last-level cache,” Cryptology ePrint Archive, Report 2015/905, 2015,
https://eprint.iacr.org/2015/905.

33. A. Zankl, J. Heyszl, and G. Sigl, “Automated detection of instruction cache
leaks in modular exponentiation software,” in Smart Card Research and Advanced
Applications - 15th International Conference, CARDIS 2016, Cannes, France,
November 7-9, 2016, Revised Selected Papers, 2016, pp. 228–244. [Online].
Available: https://doi.org/10.1007/978-3-319-54669-8 14

34. N. Zhang, K. Sun, D. Shands, W. Lou, and Y. T. Hou, “Truspy: Cache side-
channel information leakage from the secure world on arm devices,” Cryptology
ePrint Archive, Report 2016/980, 2016, https://eprint.iacr.org/2016/980.

35. Y. Zhang, “Cache side channels: State of the art and research opportunities,”
in Proceedings of the 2017 ACM SIGSAC Conference on Computer and
Communications Security, ser. CCS ’17. New York, NY, USA: ACM, 2017, pp.
2617–2619. [Online]. Available: http://doi.acm.org/10.1145/3133956.3136064

