
Dataflow based Near-Data Processing using Coarse
Grain Reconfigurable Logic
Charles Shelor, Krishna Kavi, and Shashank Adavally

Department of Computer Science and Engineering
University of North Texas

Denton, TX, USA

Abstract—The emergence of 3D-DRAM has rekindled interest
in near-data processing research. This article introduces and
describes a method for near-data processing using dataflow
techniques implemented with coarse grain reconfigurable logic.
We provide an initial evaluation of the concept to justify fur-
ther development. The melding of these technologies produces
increased throughput while dramatically reducing energy needs
for suitable classes of algorithms. The benchmarks analyzed in
this paper show performance speedups of 1.1 to 13.2 with energy
reductions of 88% to 99%.

Index Terms—Dataflow, Near-Data Processing, Coarse Grain
Reconfigurable Logic, Processing-in-Memory, Big Data, 3D
stacked DRAM, Computer Architecture

I. INTRODUCTION

One of the major problems facing today’s computer systems
is the disparate timing between processor instruction cycles and
memory access cycles. This timing mismatch has been tagged
the "memory wall" [1]. The cache hierarchy in processors
has been used to mitigate the effects of the memory wall by
providing fast access to data items on subsequent accesses.
However, there are some classes of applications that do not
exhibit repeated access to the same data items. These classes
of applications achieve little to no benefit from the cache
hierarchy. Examples of these classes include streaming and
big data applications [2]. One approach to improving the
performance of these applications is Near-Data Processing
(NDP) also known as Processing-in-Memory (PIM) or Near-
Data Computing (NDC). This approach moves the processing
closer to the memory to achieve faster access and higher
bandwidth.

The recent commercialization of 3D, stacked DRAM [3]
provides the opportunity to integrate PIM on the logic layer
of the stacked DRAM. While this logic layer provides high
bandwidth access to the memory, there are limitations to the
size and power of the processing elements. These limitations
preclude the use of standard, high performance, out-of-order
processors for PIM applications.

The use of dataflow techniques based on Coarse Grain
Reconfigurable Logic (CGRL) offers processing capacity
and power efficiency suitable for the PIM applications. A
dataflow processing-in-memory (DFPIM) structure using CGRL
consists of a set of functional blocks with a reconfigurable
interconnection. The interconnection of the blocks is configured
to implement the dataflow graph of the PIM application. The

dataflow paths are synchronized and pipelined such that a new
element is computed on every clock cycle. The parallelism
and pipelining provide high performance while requiring less
energy than out-of-order control flow processors. In this paper,
we show two different approaches for identifying segments
of programs (or kernels) that are suitable for CGRL dataflow
implementation. We can analyze the algorithm or source code
to identify kernels. We can also identify frequently executed
sequences of instructions from execution traces (no source
code is needed). In this paper we will present evaluations using
both methods. Preliminary estimates show speedups of 1.1 to
13.2 while showing energy reductions of 88% to 99%.

Section II provides a detailed description of the DFPIM
concept. Section III describes the benchmarks used in this
evaluation. Section IV describes a methodology of extracting
dataflow kernels from benchmark execution traces. Section V
provides results and analysis of the benchmarks on DFPIM.
Section VI discusses future work on DFPIM. Section VII
examines research that is closely related to DFPIM. Section
VIII provides summary and conclusions for the DFPIM work
presented in this paper.

II. DFPIM CONCEPT

Dataflow Processing-in-Memory (DFPIM) is based on
melding three technologies. The dataflow paradigm extracts
the available concurrency from the algorithms. Coarse Grain
Reconfigurable Logic (CGRL) provides an efficient and flexible
method to implement the dataflow processing. 3D-stacked
DRAM includes a logic layer on which the CGRL can be
implemented and provides low latency, high bandwidth access
to memory.

A. Dataflow

Dataflow is a style of computing where the data values
"flow" from one operation to the next operation. Dataflow
is highly concurrent and self-synchronizing [4]. Generating
and analyzing dataflow graphs are integral components to
optimizing compilers for high level programming languages.
DFPIM utilizes the dataflow graphs of the PIM applications to
extract parallelism, detect dependencies, and arrange pipelining
of the application. Pure dataflow uses data availability at each
operation to determine when to ’fire’ the operation and generate
a new result. This provides the self-synchronizing characteristic
of dataflow. However, this also introduces substantial overhead

Functional
Units

Functional
Units

Programmable
Interconnect

ALU

I1

I2

O

ALU

I1

I2

O

Sequencer

I1

I2

O

Memory

WR

RD

DAT

LD

I1

I2

O

LD

I1

I2

O

ST

I1

I2

Mult

I1

I2

O

Fig. 1. CGRL Example.

in dataflow processing which has limited its commercial
deployment.

Dataflow does not have a concept of memory as only values
are utilized. DFPIM uses load units at the dataflow graph inputs
to get the needed values from memory. The load units have 2
buffers that each hold a row of DRAM memory. The system
will be accessing data from one row buffer while the other
row buffer is being filled through a memory access. Similarly,
there are store units to write rows back to memory as required.
There are delay operations in the dataflow graphs to balance and
synchronize the path lengths. The dataflow graph is ’executed’
only when all graph inputs are available. This single level of
synchronization reduces the dataflow overhead by not requiring
synchronization at each operation in the graph.

B. Coarse Grain Reconfigurable Logic

CGRL provides a set of functional blocks that are configured
at run-time to implement an algorithm. Each functional block
is implemented directly in silicon logic to minimize latency
and power. This distinguishes CGRL from Fine Grain Recon-
figurable Logic (FGRL) used by standard Field Programmable
Gate Array (FPGA) devices. CGRL used as Coarse Grain
reconfigurable accelerators (CGRA) provide significant energy
efficiency and performance benefits [5]. Figure 1 shows an
example CGRL containing two load buffers, LD, one store
buffer, ST, two arithmetic logic units, ALU, one sequencer, one
memory, and one multiplier. The vertical lines for distribute
the output of each block to the inputs of the other blocks on
the horizontal lines. The short, diagonal lines represent the
reconfigurable connections in a cross bar style interconnection.
This arrangement allows one output to drive multiple inputs if
a data value is used more than once. The benchmarks used in
this paper required 13 to 32 functional blocks to implement
the dataflow graph.

C. 3D-Stacked DRAM

3D-Stacked DRAM is a high density, high bandwidth
memory subsystem that is created by stacking multiple DRAM

Host	 Processor	
Cores,	 Caches	

DFPIM	 &	 	
DRAM	 controllers	

Memory	 dies 	

Timing-‐specific	
DRAM	

interface	

Abstract	
load/store	 interface 	

Fig. 2. DFPIM with Stacked DRAM Example.

semiconductor dies vertically and communicating through
the stack using Through-Silicon-Vias (TSV) [6]. Chang [7]
has shown that the most significant performance benefit of
stacked DRAM is increased bandwidth. The high bandwidth
is required for high performance DFPIM operation as PIM
applications have very high memory demands. The stacked
DRAM configuration selected for DFPIM is illustrated in Figure
2. This is the same configuration selected by Zhang [8] and
Scrbak [9] in giving the highest bandwidth between PIM and
DRAM without thermal issues from the host processor.

The DFPIM instances are included in the base logic layer
with the DRAM memory controllers. DFPIM instances are
limited to 50% of an 80 mm2 die with a total dissipated power
(TDP) of 10 Watts consistent with Zhang [8].

III. PIM BENCHMARKS

There are a wide variety of benchmarks that could be used in
an evaluation such as this. The purpose of DFPIM is to offload
memory intensive kernels from the host processor to utilize
the high bandwidth of 3D stacked DRAM and the parallelism
of dataflow. We reviewed the map-reduce benchmarks from
HiBench [10], the map-reduce benchmarks from PUMA [11],
SPEC benchmarks [12], and MiBench benchmarks [13]. We
picked 3 benchmarks that had significant differences in the
dataflow configuration of the kernels. We were limited to three
benchmarks as we currently process the kernels, implement
the dataflow diagrams, and evaluate the results manually. Later
in section IV, we show how code sequences that are amenable
for dataflow implementation can be identified from execution
traces. Here we analyze an application to identify functions
that could be implemented as dataflow graphs.

The SPEC benchmarks and the PUMA benchmarks both
include a version of a histogram application. Our histogram
application performs a histogram of the red, blue, and green
pixel values of an image. Each pixel is only accessed once and
the processing is very simple. Thus, memory bandwidth is the
dominant factor in performance of this application. Even with
prefetching, the computation with 1 cache line is completed
before the next cache line is prefetched. Figure 3 shows the
dataflow graph of the histogram application implemented using
DFPIM components. The oval labeled 24-bit is the load unit
that is extracting the pixels from the image in memory. The
load unit is providing 24-bits comprised of the 8-bit red, 8-bit
green, and 8-bit blue components of the pixel on each clock
cycle. A load unit extracts data from one local row buffer while

1 11

16 8

0xFF0xFF 0xFF

red grn blu

24-bit

>> >= 1

add add add

and and and

 rd_adr
rd_dat

 wr_adr
 wr_dat

 rd_adr
rd_dat

 wr_adr
 wr_dat

 rd_adr
rd_dat

 wr_adr
 wr_dat

Fig. 3. DFPIM dataflow graph for histogram.

a second row buffer is being filled from memory. If the second
row buffer is not filled by the time it is needed the load unit
drops the ’data ready’ indicator causing the dataflow graph to
stop processing until the data becomes available.

The next row of functional units shift the red and green data
while delaying the blue data by 1 clock. The third row of blocks
are all ALU blocks that AND the input data with the immediate
value 0xFF. These three values are used as the addresses to three
memories that contain the count of each values’ occurrence.
The outputs of the memories are incremented with another set
of 3 ALU blocks and written back to the memory. The memory
block read action is configured to be asynchronous, the ALU
operation is configured to be combinatorial, and the memory
write operation is synchronous with the next clock edge. This
allows the read, increment, and write to be performed in a
single clock cycle. The rows are pipelined allowing a complete
pixel to be processed every clock cycle. A four-issue processor
is shown to take 23 clock cycles per pixel in sectionV.

Both of the map-reduce benchmark suites have a map client
that performs a word occurrence count. Actual isolation of
the words is a simple process for both control flow processors
and dataflow systems. However, implementation of the hash
table collision resolution requires more effort in dataflow. The
use of CGRL in the dataflow allows a very wide comparator
resulting in each word comparison requiring only a single clock
cycle greatly increasing application throughput. The DFPIM
internal scratch pad memory is used for the hash table and
FIFOs separate the word isolation from the hash table operation.
The resulting dataflow graphs are not presented due to space
limitations.

The third benchmark selected is the FFT implementation
from MiBench. FFT differs from the other benchmarks as it
does benefit from caches since each element is accessed log2
(size) times during the algorithm. The data is not accessed in
a streaming sequence and there are data dependencies within
the loop that restrict the amount of pipelining that can be
performed. These differences make the FFT algorithm a poor
candidate for PIM, but we chose to analyze it as a "stress test"
for DFPIM. The DFPIM scratch pad memory, loop overlap,
and 21 operating units still provide adequate throughput.

ar1

W

ai1

ar2 ai2

ai0ar0

tr ti

RealOut ImagOut

RealOut[k]

ImagOut[k]

RealOut[j] ImagOut[j]

RealOut[k] ImagOut[k]

RealOut[j] ImagOut[j]

i j

rd_adr

wr_adr

selectselect

select

select

 rd_adr
rd_dat

 wr_adr
 wr_dat

 rd_adr
rd_dat

 wr_adr
 wr_dat

fp +

fp *fp *

fp *fp *fp * fp *

fp -fp -

fp -fp -

fp -fp -

fp +

11

Fig. 4. DFPIM dataflow graph for FFT.

0x40153d.0 : @ReverseBits+29.0 : or eax, eax, ecx : 2048 counts
0x40153f.0 : @ReverseBits+31.0 : sub t0d, edx, esi : 2048 counts
0x401541.0 : @ReverseBits+33.0 : rdip t1, %ctrl153, : 2048 counts
0x401541.1 : @ReverseBits+33.1 : limm t2, 0xffffffffffffffed : 2048 counts
0x401541.2 : @ReverseBits+33.2 : wrip , t1, t2 : 2048 counts
0x401530.0 : @ReverseBits+16.0 : lea ecx, DS : 2048 counts
0x401533.0 : @ReverseBits+19.0 : mov eax, eax, edi : 2048 counts
0x401535.0 : @ReverseBits+21.0 : limm t1d, 0x1 : 2048 counts
0x401535.1 : @ReverseBits+21.1 : add edx, edx, t1d : 2048 counts
0x401538.0 : @ReverseBits+24.0 : limm t1d, 0x1 : 2048 counts
0x401538.1 : @ReverseBits+24.1 : and eax, eax, t1d : 2048 counts
0x40153b.0 : @ReverseBits+27.0 : srli edi, edi, 0x1 : 2048 counts

Fig. 5. Bit reverse instruction trace.

IV. BENCHMARK KERNEL EXTRACTION

Thus far we have shown how we can construct dataflow
graphs for kernels by analyzing the algorithm or source code.
We are also working to identify kernels even when source code
is not available. By analyzing traces generated by execution
runs of programs, we will identify sequences of instructions
that are most frequently executed. The traces used in this
paper were generated using the Gem5 simulator [14]. We
used instruction addresses and counted the number of times
each address appeared in the trace. A hash table was used to
accumulate the counts and then the table was sorted by the
count values. After identifying the most frequently executed
sequences from the sorted hash table, we constructed CGRL
dataflow graphs manually. We estimated the execution time
for the dataflow graph and measured the time for the x86
instruction sequences. We used McPAT [15] to estimate power
consumed for the two versions. This section of this paper
reports results for the "bit reverse" function of the "FFT" and
the "square root" function of the "basicmath" benchmarks from
MiBench.

Figure 5 shows a segment of a trace file from Gem5 after
annotating the execution count for each instruction. It should
be noted that the instructions in the trace file are the x86 micro-
ops and not x86 assembly source code. These instructions are

the kernel of the integer square root function. The instruction
trace was processed into a dataflow graph by using the registers
as the data dependencies and the instruction operands as the
dataflow nodes. The LIMM instructions were replaced with the
equivalent immediate value as an input. Any instructions for
spilling variables to or from registers were eliminated as those
values are held in the dataflow graph arcs. These graphs were
then analyzed for timing and energy.

Dataflow graphs generated in this manner will include
compiler artifacts and translation overhead unlike the optimized
dataflow graphs from section III that are derived directly from
the algorithm and source code. However, this dataflow graph
extraction approach can be used with any benchmark, even
when the source code is not available.

V. RESULTS AND ANALYSIS

A. Methodology

This paper is primarily focused on comparing the perfor-
mance and energy between a standard host processor and a
DFPIM implementation. We measured the clock cycles of
an out-of-order, 4-issue x86 processor using PAPI [16] for
the kernel of each benchmark. We determined the time of
execution for each kernel by multiplying the number of clocks
by the clock period of a 3.3 GHz processor. The DFPIM clock
counts were manually generated by analyzing the dataflow
graph to determine the number of clocks needed to process
each benchmark kernel. The histogram benchmark is capable of
being executed at 1 clock per RGB pixel. The word occurrence
count benchmark can isolate words at 1 clock per character,
but is provided a 10% hash collision delay for a net rate of
1.1 clocks per character. The FFT benchmark can overlap
three iterations using decoupled software pipelining [17]. Each
segment has a 2-operation dependency chain with a 4 clock
floating point latency. Thus, the FFT dataflow graph requires 16
clocks to initialize and then produces one element every 8 clock
cycles. All of the DFPIM timing computations are based on an
800 MHz DFPIM clock using a low power device technology.
This value is estimated based on the authors’ experience and
will be refined based on the results of logic synthesis of the
CGRL units in future work.

The energy needed for the x86 processor and the DFPIM
dataflow graph to execute each kernel was estimated by
using the McPAT power, area, and timing estimator [15]. The
processor model used for this evaluation was based on the
default Xeon model that is provided with the McPAT version
1.3 installation, modified to use 28 nm technology and 3.3 GHz
clock. The area and power of the DFPIM ALU was estimated
by a second McPAT configuration using a low operating power
device type and 800 MHz clock.

Each of the benchmarks requires some setup and each of
the benchmarks has to access memory for the same amount
of data for the kernel whether it is executing on an x86 or
on a DFPIM. The DFPIM uses less energy for accessing the
same amount of data because the external link between the
processor and DRAM is not used. The DFPIM gets more data
bytes per access so the access overhead energy (precharge, row

Benchmark x86 us DFPIM us Speedup x86 uJ DFPIM uJ Savings
Histogram 1811 328 5.52 30,287 197 99.3%
Word count 1866 141 13.23 31,183 249 99.2%
FFT 362 328 1.10 6,055 724 88.0%

TABLE I
X86 PROCESSOR AND DFPIM ALGORITHM DERIVED COMPARISON.

open, row close) is amortized over more bytes of data. We
are not ready to quantify this savings in energy, so we will
only compare processor energy and DFPIM energy and assume
a constant for the memory subsystem energy. These energy
savings will be quantified in future work. These benchmarks
are very loop intensive which allows us to ignore the timing
and energy of the non-kernel execution.

B. Results

Table I provides the results of our analysis. The histogram
benchmark shows an execution time speedup of 5.52. The
histogram loop of the x86 takes 23 clocks for each pixel as
measured by the PAPI instrumentation. The DFPIM dataflow
graph processes a pixel every clock. The speedup is not 23
because the x86 clock is 4.13 times faster than the DFPIM
clock. The McPAT analysis of the Xeon processor model shows
a total power usage of 16.7 Watts per core when the level 3
cache and networking power is split evenly among the cores.
The DFPIM requires 13.75 ALU equivalents totaling 0.522
Watts. The x86 needs 30,267 uJ while the DFPIM uses 197
uJ. This is an energy savings of 99.3%.

The word occurrence count benchmark shows a speedup of
13.23. This is partly due to the pipeline and parallelism of
processing one character per clock cycle in the word isolation
section of the benchmark and partly to the ability of DFPIM to
establish a very wide data path. The wide data path compares
32 characters in a single clock cycle using 4 64-bit ALUs in
the hash table section. The wide ALUs and memory for the
hash table result in a 46.5 ALU equivalent for size and power.
The DFPIM word count configuration uses 1.77 Watts which
is about 3 times the power of the histogram benchmark. The
processor uses 16.7 Watts for 31,183 uJ. The DFPIM uses only
249 uJ for a 99.2% energy savings.

The FFT benchmark is essentially the same speed in the
DFPIM as in the x86 processor with a speedup of only
10%. The DFPIM needs 16.5 ALU equivalents and 14 FPU
equivalents. This results in the DFPIM needing 2.21 Watts
which is still significantly less than the 16.7 Watts of the x86
processor. The DFPIM provides an 88.0% power savings. FFT
does not match the characteristics for a PIM application since
it does not access memory in a streaming manner and it does
access elements multiple times. The DFPIM provides equivalent
performance at 1/8 of the power even in this non-ideal use.

Table II compares the performance and energy values for
the execution trace derived dataflow graph. The identified
sequences were executed and timed on an x86 processor and
then analyzed using dataflow with CGRL nodes. The dataflow
graph used 8 ALU’s for "bit_reverse" function, 12 ALU’s for
"square root" function and 25 ALU’s for "lex num" function.
The lex num dataflow graph has more parallelism and obtains

Benchmark x86 ns DFPIM ns Speedup x86 nJ DFPIM nJ Savings
Bit reverse[FFT] 27.5 22.5 1.22 459 7 98.5%
Square root[Basicmath] 212.0 187.0 1.13 3540 85 97.6%
Lex num[GCC] 136.0 62.5 2.18 2271 59 97.4%

TABLE II
X86 PROCESSOR AND DFPIM TRACE DERIVED COMPARISON.

a larger speedup. These instruction sequences were extracted
from the executable without the source code unlike the graphs in
section III. Working from the source code allowed optimizations
for a dataflow implementation that have not been applied to
the execution trace results. Better results are anticipated when
optimizations are applied to the instruction trace data.

VI. FUTURE WORK

The preliminary results shown in section V have demon-
strated DFPIM is a viable approach to both performance im-
provements and energy savings for PIM applications. Continued
development of DFPIM will include completely defining the set
of functional blocks and the quantity of each type of functional
block to include in a DFPIM cluster. This definition will include
the block’s primary functions, list and purpose of all of its
inputs and outputs, and configuration options such as latency
or operand size. The definition will serve as a reference for
generating dataflow graphs and development of the functional
blocks. Each of the functional blocks will be modeled in VHDL.
A synthesis tool will be used to characterize size, timing, and
energy for each of the DFPIM blocks in 2 or 3 different silicon
technologies.

A DFPIM simulator will be developed that will read XML
representations of the dataflow graphs and allow benchmarks
to be executed by the simulator. The simulator will include
the size, timing, and energy characteristics of each DFPIM
block. This will allow the simulator to compute execution time
and energy for the benchmark. The simulator will provide
an automated method for analyzing benchmarks which will
allow more benchmarks to be evaluated to determine if the
preliminary results are consistent for a larger set of benchmarks.

The extraction of benchmark kernels through execution trace
processing will be expanded to include additional instruction
sets. An automated dataflow graph generation process will
be developed that will translate the instruction traces into the
XML representation of the DFPIM dataflow graphs for input
to the simulator.

VII. RELATED WORK

TOP-PIM [18] is a very similar approach to DFPIM. The
principle difference being the use of GPGPU devices as the
processor component in the PIM. This study showed a mean
decrease in performance of 25% for a 22 nm technology and a
mean increase in performance of 8% for a 16 nm technology.
The energy savings was shown to be 76% and 86% respectively
when including the memory power. The parallelism of dataflow
and flexibility of CGRL work to provide better performance
at comparable energy savings. There were no benchmarks
in common between the two studies so a direct comparison

cannot be stated until DFPIM expands its benchmark coverage
to include those used by Zhang.

Single Graph Multiple Flows (SGMF) [19] uses a dynamic
dataflow paradigm and CGRL to compare to an Nvidia Fermi
streaming multiprocessor. The application arena for SGMF is
compute intensive applications so it is not suitable as a PIM.
The advantages of using dataflow with CGRL is shown in this
paper with an average speedup of 2.2 and energy efficiency of
2.6 for the 64 token case.

The use of a low power embedded processor as a PIM is
addressed in Scrbak [9]. The embedded processor is limited
to memory accesses at a cache line resolution. It also requires
energy for instruction fetch and decode and a cache subsystem
that is not needed by DFPIM. The parallelism of dataflow
CGRL provides higher performance than a single instruction
stream processor running at the same clock rate.

The Tesseract PIM in [20] uses multiple in-order processors
in a Hyper Memory Cube [3]. The memory bandwidth
restrictions of the in-order cores are mitigated by prefetching
mechanisms. The internal crossbar network allows the Tesseract
processors to communicate without host processor intervention.
This allows them to be used for the reduce task workload as
well as the map task workload. The Tesseract PIM performance
is significant for multi-threaded message passing applications.
DFPIM has not been evaluated in these types of applications.

The Near DRAM Accelerator (NDA) [21] utilizes a dataflow
network of functional devices to reduce energy by 46% and
increase performance by 1.67 speedup. The NDA does not
include sequencing functional units nor scratch pad memories
which we have shown to be necessary for best performance (up
to 13.5 speedup) in some benchmarks. The NDA connects each
accelerator to a single DRAM die rather than a 3D-DRAM
stack used by DFPIM. This results in a higher accelerator-
to-memory cost ratio as a single DFPIM can support 4 or 8
DRAM dies.

VIII. CONCLUSION

In this paper we have used two different techniques for
identifying kernels that could be executed by CGRL dataflow
PIMs. When the source code or the algorithm for an application
is available, it will be easier to extract kernels, analyze the
functionality and design optimal dataflow implementations.
However when source code is not available, we can extract
frequently executed instruction sequences from execution traces,
and translate the instruction sequences into dataflow graphs.
This approach may not result in optimal dataflow graph
implementations. The preliminary results presented here support
these conclusions.

More importantly, our preliminary results strongly favor the
use of dataflow graphs for exploiting PIM technologies. Such
implementations for scale out applications, or applications that
do not exhibit temporal localities and applications that require
high memory bandwidths can result in significant speedups and
substantial energy savings. CGRL dataflow implementations
are more efficient than using traditional processing elements or
GPUs for these classes of benchmarks. Our work also shows

that a hybrid dataflow approach with sequencers, scratch-pad
memories, and FIFOs implement multilevel looping and asyn-
chronous interactions within the application kernels without
host intervention. These features provide the 13.5 speedup for
word occurrence count and complete implementation of the
FFT within the accelerator.

ACKNOWLEDGMENT

This work is conducted in part with support from the NSF
Net-centric IUCRC and its members. The code for extracting
instruction sequences from execution traces was implemented
by Yosvany Blanco, Troy King and Margarita Sanchez. These
students were supported by NSF REU supplement during
summer 2015.

REFERENCES

[1] W. A. Wulf and S. A. McKee, “Hitting the memory wall:
Implications of the obvious,” SIGARCH Comput. Archit. News,
vol. 23, no. 1, pp. 20–24, Mar. 1995. [Online]. Available:
http://doi.acm.org/10.1145/216585.216588

[2] M. Ferdman, A. Adileh, O. Kocberber, S. Volos, M. Alisafaee, D. Jevdjic,
C. Kaynak, A. Popescu, A. Ailamaki, and B. Falsafi, “A case for
specialized processors for scale-out workloads,” Micro, IEEE, vol. 34,
no. 3, pp. 31–42, May 2014.

[3] Micron Technology, “Hmc high-performance memory brochure,” nov
2014. [Online]. Available: http://www.micron.com/~/media/documents/
products/product-flyer/brochure_hmc.pdf

[4] K. M. Kavi, C. Shelor, and D. Pace, “Concurrency, synchronization, and
speculation - the dataflow way,” Advances in Computers, vol. 96, pp.
47–104, 2015. [Online]. Available: http://dx.doi.org/10.1016/bs.adcom.
2014.10.004

[5] V. Govindaraju, C.-H. Ho, T. Nowatzki, J. Chhugani, N. Satish,
K. Sankaralingam, and C. Kim, “Dyser: Unifying functionality and
parallelism specialization for energy-efficient computing,” Micro, IEEE,
vol. 32, no. 5, pp. 38–51, Sept 2012.

[6] G. Loh, “3d-stacked memory architectures for multi-core processors,” in
Computer Architecture, 2008. ISCA ’08. 35th International Symposium
on, June 2008, pp. 453–464.

[7] D. Chang, G. Byun, H. Kim, M. Ahn, S. Ryu, N. Kim, and M. Schulte,
“Reevaluating the latency claims of 3d stacked memories,” in Design
Automation Conference (ASP-DAC), 2013 18th Asia and South Pacific,
Jan 2013, pp. 657–662.

[8] D. Zhang, N. Jayasena, A. Lyashevsky, J. L. Greathouse, L. Xu,
and M. Ignatowski, “Top-pim: Throughput-oriented programmable
processing in memory,” in Proceedings of the 23rd International
Symposium on High-performance Parallel and Distributed Computing,
ser. HPDC ’14. New York, NY, USA: ACM, 2014, pp. 85–98. [Online].
Available: http://doi.acm.org/10.1145/2600212.2600213

[9] M. Scrbak, M. Islam, K. Kavi, M. Ignatowski, and N. Jayasena,
“Processing-in-memory: Exploring the design space,” in Architecture of
Computing Systems Ð ARCS 2015, ser. Lecture Notes in Computer
Science, L. M. P. Pinho, W. Karl, A. Cohen, and U. Brinkschulte, Eds.
Springer International Publishing, 2015, vol. 9017, pp. 43–54. [Online].
Available: http://dx.doi.org/10.1007/978-3-319-16086-3_4

[10] S. Huang, J. Huang, J. Dai, T. Xie, and B. Huang, “The hibench
benchmark suite: Characterization of the mapreduce-based data analysis,”
in Data Engineering Workshops (ICDEW), 2010 IEEE 26th International
Conference on, March 2010, pp. 41–51.

[11] F. Ahmad, S. Lee, M. Thottethodi, and T. N. Vijaykumar, “Puma:
Purdue mapreduce benchmarks suite,” Purdue University, Tech. Rep.,
2012. [Online]. Available: http://docs.lib.purdue.edu/ecetr/437

[12] “Spec benchmarks.” [Online]. Available: https://www.spec.org/
benchmarks.html

[13] M. Guthaus, J. Ringenberg, D. Ernst, T. Austin, T. Mudge, and
R. Brown, “Mibench: A free, commercially representative embedded
benchmark suite,” in Workload Characterization, 2001. WWC-4. 2001
IEEE International Workshop on, Dec 2001, pp. 3–14.

[14] N. Binkert, B. Beckmann, G. Black, S. K. Reinhardt, A. Saidi, A. Basu,
J. Hestness, D. R. Hower, T. Krishna, S. Sardashti, R. Sen, K. Sewell,
M. Shoaib, N. Vaish, M. D. Hill, and D. A. Wood, “The gem5 simulator,”
SIGARCH Comput. Archit. News, vol. 39, no. 2, pp. 1–7, Aug. 2011.
[Online]. Available: http://doi.acm.org/10.1145/2024716.2024718

[15] S. Li, J. H. Ahn, R. D. Strong, J. B. Brockman, D. M. Tullsen, and
N. P. Jouppi, “McPAT: An Integrated Power, Area, and Timing Modeling
Framework for Multicore and Manycore Architectures,” in MICRO 42:
Proceedings of the 42nd Annual IEEE/ACM International Symposium
on Microarchitecture, 2009, pp. 469–480.

[16] D. Terpstra, H. Jagode, H. You, and J. Dongarra, “Collecting performance
data with papi-c,” in Tools for High Performance Computing 2009.
Springer, 2010, pp. 157–173.

[17] E. Raman, G. Ottoni, A. Raman, M. J. Bridges, and D. I. August,
“Parallel-stage decoupled software pipelining,” in Proceedings of the 6th
annual IEEE/ACM international symposium on Code generation and
optimization, ser. CGO ’08. New York, NY, USA: ACM, 2008, pp. 114–
123. [Online]. Available: http://doi.acm.org/10.1145/1356058.1356074

[18] D. P. Zhang, N. Jayasena, A. Lyashevsky, J. Greathouse, M. Meswani,
M. Nutter, and M. Ignatowski, “A new perspective on processing-in-
memory architecture design,” in Proceedings of the ACM SIGPLAN
Workshop on Memory Systems Performance and Correctness, ser. MSPC
’13. New York, NY, USA: ACM, 2013, pp. 7:1–7:3. [Online]. Available:
http://doi.acm.org/10.1145/2492408.2492418

[19] D. Voitsechov and Y. Etsion, “Single-graph multiple flows: Energy
efficient design alternative for gpgpus,” in Proceeding of the 41st
Annual International Symposium on Computer Architecuture, ser. ISCA
’14. Piscataway, NJ, USA: IEEE Press, 2014, pp. 205–216. [Online].
Available: http://dl.acm.org/citation.cfm?id=2665671.2665703

[20] J. Ahn, S. Hong, S. Yoo, O. Mutlu, and K. Choi, “A scalable processing-
in-memory accelerator for parallel graph processing,” in Proceedings of
the 42Nd Annual International Symposium on Computer Architecture,
ser. ISCA ’15. New York, NY, USA: ACM, 2015, pp. 105–117.
[Online]. Available: http://doi.acm.org/10.1145/2749469.2750386

[21] A. Farmahini-Farahani, J. H. Ahn, K. Morrow, and N. S. Kim, “Nda:
Near-dram acceleration architecture leveraging commodity dram devices
and standard memory modules,” pp. 283–295, 2015. [Online]. Available:
http://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=7056040

