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Abstract
In this paper we present a new approach to building
multithreaded uni-processors. Our innovativeness stems
from an architecture with non-blocking threads where all
memory accesses are decoupled from the thread execution.
Data is pre-loaded into the thread context (registers), and all
results are "post-stored" after the completion of the thread
execution. The decoupling of memory accesses from thread
execution requires a separate unit to perform the necessary
pre-loads and post-stores, and controlling the allocation of
hardware thread contexts to enabled threads. This separation
facilitates for achieving high locality and minimizing the
impact of distribution and hierarchy in large memory
systems. We present our preliminary results obtained from a
Monte Carlo simulator that compares the performance of the
proposed system with conventional architectures for
randomly generated threads.
Key Words. Multithreaded architectures, Dataflow
architectures, Simultaneous multithreading, Superscalar
architectures.

1. Introduction
The performance gap between processors and memory

has widened in the past few years and the trend appears to
continue in the foreseeable future. This gap can be masked
to some extent by multiple levels of cache memories.
However, studies have shown that even this does not
eliminate processor idle cycles resulting from cache misses
and the concomitant cycles to fetch the missing data across
the memory hierarchy. Distributed shared memories only
compound this problem.

Multithreading has been touted as the solution to
minimize the loss of CPU cycles by executing several
instruction streams simultaneously. The advent of
superscalar architectures make the advantages of the
multithreading even more significant. In conventional
superscalar systems, instructions from a single program
stream are selected for issue, which leads to stalls on data
and control dependencies among the instructions. In
multithreading instructions from different streams can be
selected for issue, thus eliminating pipeline stalls

In our ongoing research, we have bee investigating
architectural innovations for improving the performance of
multithreaded dataflow systems [Kavi 95, 97]. We have been
exploring ways to use instruction, data and I-structure cache
memories [Kavi 95, 97], improving performance of such
caches by re-using operand memory [Kavi 96], in-place
updates of I-structure caches without changing I-structure
semantics [Fang 97], and control-flow based scheduling of
instructions within a dataflow thread [Fang 97]. This paper
describes a new architecture that brings non-blocking (often
fine-grained) data driven thread model to conventional
load/store microprocessor designs, for the purpose of
tolerating memory latencies. In this paper we present our
preliminary results.

We will introduce the new architecture in Section 2. A
simplified analytical model to evaluate the performance of
the new architecture is described in Section 3. Section 4
details our Simulation environment, and the experimental
basis for comparison of the new architecture with
conventional load/store processors. The results obtained
from our experiments are reproduced in this section. Section
5 describes the compiler optimizations that are essential to
utilize the new architecture.

2. Our Architecture
The execution model of the proposed architecture relies

on a non-blocking data-driven threads, akin to TAM [Culler
93] and Cilk [Blumofe 95] threads. At a programming level,
a program is viewed as a set of activation frames and each
frame consists of several non-blocking threads. A non-
blocking thread typically corresponds to a basic block and an
activation frame is typically a loop iteration or a function.
The threads within an activation frame can share memory at
cache level, have access to the registers of other threads, and
in general can share the "state of the activation frame". The
scheduling, data sharing and synchronization among the
threads within an activation frame is treated differently from
such activities among threads belonging to different
activation frames. This leads to multi-level synchronization
and scheduling of threads.

In our architecture, threads are non-blocking, and during
execution they require no memory accesses -- all data



accesses are performed by "pre-loads" and "post-stores" (we
will call our architecture as PL/PS, pronounced as PuLPS).
Each thread is enabled when the required inputs are available
(i.e., data driven model at a coarser grain). The number of
inputs for a thread will be fixed -- typically to a subset of
the number of registers available to a thread. Once enabled, a
thread executes to completion where the instructions
belonging to a thread will execute on a conventional
pipelined CPU (with no memory access).

The results of a thread which are normally destined to
other threads are not immediately supplied to waiting
threads. The results of a thread are accumulated until the
completion of the thread, to eliminate any delays and
interruptions of the thread execution resulting from cache
misses and other memory latencies during stores.  Upon the
completion of the thread execution, the results are handled
by a separate hardware unit that executes "post-stores" to
distribute the data to waiting threads. Whenever possible, the
data can be delivered into the hardware registers of the
destination threads directly. Compile time analysis can
determine the target registers for the delivery of data. The
decoupling of memory accesses from the thread execution
eliminates thread stalls due to memory access (or thread-
switches on cache misses [Agrawal 95]), and permits us to
independently explore issues related to data distribution
across memory hierarchies.

Simultaneous Multithreading [Tullsen 95, 96] of
multiple active threads is inherent in our design. Such
interleaving will permit us to maintain longer and sustained
pipeline flows. However, the interleaving is limited to the
threads of an activation frame, and compiler can generate the
necessary code to control the interleaving.

Compiler support and program analysis at many levels
in developing efficient non-blocking threads is crucial for the
success of the new architecture.  At a high level, the
compiler must appropriately partition the source program
into threads; at a low level, registers must be scheduled so as
to avoid cache references or even costlier trips to primary
storage. Through our use of SUIF on real programs, our
future research will consist of applying user annotations,
compile-time restructuring, and run-time specialization to
obtain high performance on those portions of a program that
are computationally intensive.

2.1. A block diagram of the architecture.
The overall block diagram of our architecture shown

below (Fig. 1). The Scheduler performs all memory accesses
(Pre Loads and Post Stores into available register contexts),
and delivers the contexts to Activation Frame manager,
which is responsible for selecting (a subset of) threads for
execution on the pipeline. The Pipeline Control unit will
interleave and execute instructions of the enabled threads on
conventional pipelines (with no memory access). In this

new architecture, both the memory pipeline and execution
pipleline are simpler than conventional pipelines.
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Fig. 1 PL/PS Block Diagram

3. Analytical Model evaluating the new
architecture.

As a first step in investigating the potential
improvements that can be gained from our proposed
architecture, we have developed a simple analytical model.
For the purpose of comparison, we will start with a
traditional pipelined architecture, where load and store
instructions are executed in the same pipeline. Consider for
example a MIPS R4000 like pipeline.
The CPI can be expressed as;
= 1 + (Average number of stalls due to data dependencies)
+(Average number of stalls due to memory accesses)
= 1 + Sdc + Smc
where Sdc is the average number of stalls due to data

dependencies and Smc is the average number of stalls due to

memory accesses. The stalls due to data dependencies include
dependencies among arithmetic instructions as well as
dependencies between load/store and arithmetic instructions.
The stalls due to memory accesses depend on the average
number of memory references, cache miss rate and cache
miss penalty. Current architectures basically eliminate all
stalls due to data dependencies among arithmetic
instructions, and branch instructions using such techniques
as result forwarding, delayed branches and branch prediction.
However, dependencies that exist between memory access
and arithmetic instructions do cause stalls.

The CPI for the new architecture is impacted by the
following factors.
1. Stall in the pipeline. As with traditional pipelines, data
dependencies among instructions could lead to stalls.
However, the new architecture eliminates data
dependencies among load/store instructions and arithmetic
instructions, since all loads are completed before the
arithmetic instructions are started (using the Preloads), and
all stores become post-stores.



2. There could be delays in starting instructions in the
pipeline when the preloads cannot be completely
overlapped with the pipeline execution. This could happen
when there are insufficient hardware contexts, insufficient
thread level parallelism, memory bandwidth is insufficient
to accommodate the preload and post-stores, or if the
synchronization (or data dependencies) among the threads
serializes the execution of the threads. In addition, cache
misses could delay the preload and post-stores of thread
contexts. However, it is our claim that the preload and
post-stores provides for compile time optimizations of
“blocking” thread contexts to permit the use of “Load
Multiple” and “Store Multiple” instructions.

When there is a perfect overlap of thread execution in
the pipeline with the preload and post-stores, the PL/PS
architecture eliminates all stalls due to memory access
encountered by instructions. CPI is given by  1 + Sdn
where Sdn is the average number of stalls due to data

dependencies in the pipeline of the new architecture. As
mentioned above, this will be smaller than Sdc, the average

number of stalls in traditional execution pipelines (since the
stalls due to load/stores are eliminated). When there is less
than perfect overlap of preloads and post-stores with the
execution of threads in the pipeline, the CPI can be
estimated as:1 + Sdn + Smn
where Smn is the average number of due to imperfect

overlap. In order to obtain a perfect overlap, there should be
sufficient work processed by the pipeline while the contexts
are pre-loaded and post-stored.

It is also possible to model the situation as a queueing
system. We have used a closed network as shown below
(Fig. 2), with a fixed number of threads (n) in the system.
As threads complete execution in the pipeline, they enable
new threads (waiting for synchronization) with a probability
of (1-p). It is straightforward to derive solutions for
throughput, utilization and average queue lengths of each
sub-queue shown above. We are more interested in obtaining
values for the probability of overlap between the memory
accesses and pipeline execution. This is obtained by finding
the probability that both the pipeline and the memory access
servers are simultaneously busy.
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Fig. 1. A closed network of PL/PS architecture

n =7; 
p=0.2

n= 14; 
p= 0.2

n=7; 
p=0.8

n=14; 
p=0.8

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7

(2,3,1)

(3,2,1)

(2,1,3)

(1,2,3)

Probability of Overlap

Service times
(1/m1, 1/m2, 
1/m3)

Figure 3. Probability of overlap analysis
The results are shown above (Fig. 3). The simple

analysis indicates that when the delay due to synchronization
is small (relative to the memory access delays and pipeline
execution delays), we can achieve significant overlap
between the memory and pipeline units, supporting our
intuition. It should also be noted, that slower unit (either
memory or pipeline) will throttle the flow through the
system, by starving other units (increasing their idle times).

4. Simulation Environment and Results
To further analyze proposed architecture, we have

developed a Monte Carlo simulation environment. In the
simulation, threads with a random number of load, store and
pipeline cycles are generated. A set of initial threads are
processed by the Scheduler (Memory accesses) for Pre
Loading register contexts of threads. These threads are then
handed over to Pipeline control unit (with a preset context
switching overhead). The pipeline unit will process threads
(executes the pipeline cycles), overlapping with the
Scheduler that may be preloading or poststoring data for
other threads. When a thread completes execution in the
pipeline, the thread context is placed in the Scheduler queue
for poststoring its results (with a fixed context switch
overhead). When the poststoring is completed by the
Scheduler, additional threads are randomly enabled (created)
and placed in the Scheduler queue, modeling the delivery of
results to waiting threads (and enabling some of them). Fig.
4  represents the simulator diagramatically.

Waiting for Load/Store Waiting for Pipeline execution

Pipelines

Scheduler

Completed threads

Figure 4. Simulation model of PL/PS architecture
In order to compare our architecture with conventional

system, we have simulated a system with a single
conventional processor that does both memory accesses
(loads and stores) and executes non-memory pipeline



instructions. Completing threads enable (create) new threads
as before. In order to make fair comparison, we have repeated
our studies with multiple conventional processing units.
However, when multiple units are used, we have included
the potential for memory conflicts, which is set to be
proportional to the number of memory accesses (loads and
stores) needed by a thread.

For all systems, we have included the probability of a
cache miss and cache penalty. Our intuition is that, when
the memory latency increases (as a function of cache miss
rate and miss penalty), the PL/PS architecture achieves
better performance than conventional pipelines. In our
experiments, we have varied the total number of threads
processed, the average number of load, store, pipeline cycles
per thread (i.e., thread granularity), the maximum number of
register contexts with the pipeline and the memory unit
(Scheduler), and the cache miss penalty. Finally, we varied
the number of processing units in the conventional
architecture, as well as the number of memory units
(Scheduler) and pipelines in the PL/PS architecture. We
describe our findings below. The results reported in this
paper uses uniform distribution with a specified minimum
and maximum value for all parameters (e.g., load, store,
pipeline cycles, interarrival times).
4.1. Results of the Simulation Studies.
   4.1.1.        Total        Execution        Times.    As a first step, we have
randomly generated several threads to be processed by the
new architecture, conventional architecture with a single
processor and conventional architecture with 2 processors.
Fig. 5 shows the results.
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Figure 5. Total execution times under identical workloads
The total execution time taken to process the threads by

PL/PS (new architecture) is consistently smaller than
conventional architecture with a single processing unit. The
performance conventional architecture with two processors
matches that of PL/PS architecture. It should be noted,
however, the two processors of conventional architectures

are complete processing units (hence more hardware) while
the two hardware units (viz., Scheduler and Activation
Frame Manager) of the new architecture are not (hence less
hardware). These results are obtained for a system with light
load (the average queue lengths of waiting jobs is
approximately 2, for all the systems examined).

We then explored the impact of heavier loads. Even
when the average queue lengths exceeded 15, the trends are
very similar (except for longer average waiting delays).
Occasionally, the conventional architecture with 2
processors fared slightly better than the new architecture.
The above results were generated using the same set of
random threads (with random arrival times) for all 3
systems. However, since we propose to use a non-blocking
thread model, where completing threads enable other waiting
threads, we have repeated the experiment by randomly
enabling new threads as threads exit the system, based on the
individual systems’ capabilities1. The results with a
moderate loads (average number of jobs waiting for a
processor is about 10) are shown Fig. 6.
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Figure 6. Total execution for non-blocking data driven
threads

As can be seen from the diagram, PL/PS still
outperforms conventional architecture with one processor;
however, the conventional architecture with 2 processors
performs better than PL/PS. This should be expected: with 2
processors, the delay due to synchronization (enabling of
new threads) is smaller, which in turn reduces the overall
waiting times and response times for jobs. Fig. 7 shows the
average response times under moderate loads. Once again,
PL/PS outperforms the conventional architecture with one

                                                
1 In the previous workload, the times when a thread becomes
enabled is the same for all 3 systems. In the new workload, the
time when a new thread enabled depends on when a previous
thread completes execution.



processor, but does not compare well with a 2 processor
system.
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Figure 7. Average response times
   4.1.2.           Context-Switching           Overhead   . In the above
experiments, we set the cost of passing thread contexts
between the Scheduler and the Activation Frame Manager (in
the PL/PS) to 10 cycles. Conventional architecture occurs
no such context switching overhead. We feel that, with
multiple hardware contexts for threads, the context switching
overhead will be very small. The overall execution time for
the PL/PS increases linearly with the context switching
overhead.
   4.1.3.         Number        of         Hardware         Contexts:    We have also
investigated the performance of PL/PS by restricting the
number of available hardware contexts. The performance
degrades significantly, only when the number of available
hardware contexts drops below . Eight hardware contexts (8
for Scheduler and 8 for Activation Frame Manager) appeared
to be sufficient for workloads used in our studies. Even
under heavily loaded conditions, the average number
hardware contexts reaches a balance, since new threads are
enabled for execution only when other threads complete their
execution (data driven scheduling). This finding is similar to
our finding using the analytical model described in the
previous section (Section 3).
   4.1.4.         Memory        Latency.    Our contention is that the PL/PS
architecture out performs the conventional architecture,
either with one or two processors, for longer memory
latencies. In our simulations, the memory latencies are
modeled using cache miss rates and cache miss penalties. We
use the same rates and penalties for all 3 systems. Our
intuition is supported by the data in Fig. 8; the new
architecture performs better than the conventional
architecture with 1 or 2 processors, when the miss penalty is
moderate large (100). As the cache miss penalty becomes
very large, all systems suffer performance degredation since
the pipelines are idle (PL/PS will have imperfect overlap

between memory and pipleine processors). In such cases, it
may be worthwhile considering (context) switching to other
ready threads (similar to the strategy used in Alewife
[Agrawal 95]). However, since our model is based on non-
blocking threads, we have not explored such strategies.
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Figure 8. Significance of memory latency on overall
execution time

   4.1.5.            Memory           Conflicts.       In the two processor
(conventional system), we can vary the probability of a
conflict for memory (since two autonomous processors are
accessing memory to process the threads), and the delay due
to the conflict. In all of the previous experiments, the
conflict probability is set to 10% and the conflict penalty to
10 cycles. It should be clear that the two processor system
will perform poorly with higher memory conflict rates and
penalties (Fig. 9).
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execution time

   4.1.6.        Task        Granularity.    An additional parameter that can be
varied is the granularity of a thread. In the above
experiments, we have used threads with an average of 6
cycles of execution through the pipeline (6 load and store
cycles per thread). These numbers are used to reflect the fine
grained nature of our thread model. However, we feel that the



PL/PS architecture performs better than conventional
architecture (with one processor) even for medium grained to
large grained threads. This is partially supported by the data
in Fig. 10.
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Figure 10. Impact of thread granularity on total execution
time

   4.1.7.         Superscalars.    Finally, we wanted to test if it is
beneficial to add more memory processors (Scheduler) or
more pipeline units (Activation Frame Managers). The data
in Fig. 11 shows that it is better to add more memory
processors. This is appealing given that we were attempting
to tolerate memory latencies - more memory processors
effectively reduce the memory latency. Fig. 11 also includes
data for 1, 2 or 3 conventional processors processing the
same workload. The work load consists of 85 threads; the
test runs varied the granularity of threads from 9 cycles to 32
cycles per thread..
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Figure 11. Trade-off analysis between multiple memory and
pipeline units

   4.1.7.        Summarizing.    Our experiments support our intuition
that the overlapped access to memory with the execution of
non-memory instructions will improve the performance of
multithreaded architectures. While conventional architectures
with 2 processors performs as well as (and sometime better
than) the PL/PS architecture, one needs to remember that the
2 processors implies more complex hardware than PL/PS

and its performance is sensitive to the memory conflict
probability and conflict penalties. While the non-blocking,
data driven model advocated implies fine grained threads, the
PL/PS architecture also does well for medium grained
threads. The experiments are based on randomly generated
threads. Some of the workload parameters (e.g., thread
granularities) are based on a cursory examination of code
generated from simple Cilk programs.

5. Conclusions and Future Research
In this paper we presented a new architecture that

decouples memory accesses from pipeline execution. The
decoupling of memory accesses from thread execution
requires a separate unit to perform the necessary pre-loads
and post-stores, and controlling the allocation of hardware
contexts to enabled threads. This separation facilitates for
achieving high locality and minimizing the impact of
distribution and hierarchy in large memory systems. The
non-blocking nature of threads eliminates the need for thread
switching (resulting from synchronization requirements),
thus improving the overhead in scheduling of threads.

Our preliminary results are very encouraging. The
PL/PS architecture always outperforms conventional
architecture with one processor. It also performs better than
a 2 processor (conventional architecture), when the
probability of memory conflicts and memory latency
become significant. Our studies also indicate that multiple
pipelines (i.e., superscalars) are less beneficial without
multiple hardware units accessing memory in a
multithreaded architecture.

Our studies have assumed a non-blocking thread model.
While there are programming languages that support such a
model (e.g., Cilk), it may be worthwhile considering
compiler technology to automatically convert traditional
blocking threads into non-blocking threads. In our studies
we have assumed that it is possible to generate sufficient
number threads to achieve an almost perfect overlapped
execution between the memory access and pipeline
execution. Instructions of a thread must be reordered with all
loads at the beginning and all stores at the end of thread
execution. Such reordering for conventional programming
models will produce very fine grained threads that may cause
excessive context switching overheads. Aggressive compiler
analyses are needed to generate optimal threads with medium
grained threads (with longer run-lengths). This may
necessitate new approaches to register allocation (e.g., it
may be beneficial to load a value into multiple registers, in
different contexts; overlapping the input registers of a thread
with the result registers of another), predictive preloading
across branches based on branch prediction techniques, and
data placement (e.g., blocking the variables of a thread
would permit “load multiple” type instructions to efficiently
preload a thread context).



While we advocated multithreading as the solution to
memory latency,  other researchers have been exploring
different solutions, including Data scalar [Berger 97],
Multiscalar [Sohi 95], processor-memory integration
[Saulsbury 96], and aggressive prefetching techniques [Baer
91].
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