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Abstract 
 

Programs often call the same function with the 
same arguments, yielding the same results. We call 
this phenomenon, “function reuse”. Previously, we 
have shown such a behavior for some of the 
SPEC2000 integer benchmarks using HP ATOM 
instrumentation tools. However, this required 
extensive analysis by hand, and assumptions 
regarding side-effects caused by functions. In this 
paper, we modified a well-known architecture 
simulator, SimpleScalar, to analyze multiple 
benchmarks to investigate the function reuse 
behavior.  
Key words. Function reuse, Speculative Execution, 
Value Prediction, Instruction Reuse, Basic Block 
Reuse, Instruction Level Parallelism, SimpleScalar 
 
1. Introduction 
 

In modern computer systems, CPUs are endowed 
with multiple processing elements (such as multiple 
floating point and integer arithmetic units, memory 
access units, branch units). The goal then becomes 
the execution of multiple instructions per cycle, as 
characterized by the desire to increase Instructions 
Per Cycle (IPC) executed by processing elements. 
The basic idea is to execute “independent” 
instructions from a program in parallel, potentially in 
an order other than that defined by the program 
sequencing. It was soon discovered that insufficient 
instruction level parallelism (ILP) existed in a single 
thread, leading to the utilization of multiple threads 
(either from the same program or from a workload 
consisting of different applications running on the 
CPU). Modern processors also rely on concepts such 
as speculative execution of instructions based on 
branch prediction techniques. Such techniques do 
increase IPC, but do not necessarily increase the 
number of useful instructions executed.   

Related to branch prediction, that aims to predict 
the path a program sequence takes, is value 
prediction. Value prediction [1] originally predicted 
that “load” instructions that read data from a memory 

location, return the same value as a previous memory 
access to the same address. Since memory accesses 
take much longer than other instructions [2], reusing 
a previously fetched value (based on the prediction 
that the values are the same) can permit the CPU to 
achieve higher IPC counts. Techniques such as “trace 
caches” [3] can help with value prediction, since 
trace caches retain histories of execution of 
instructions. As a next step in this trend, one can use 
prediction for memory addresses [4] since the 
addresses of array elements often differ by a constant 
displacement; and even predicting that an arithmetic 
instruction (such as an ADD) produces the same 
result as a prior execution of the instruction, 
particularly involving loops where the same 
instruction is executed repeatedly, with the same 
register operands, (provided that the registers are not 
modified). While compiler optimizations move loop 
invariant code out of a loop, some invariant code 
cannot be detected at compile time. More recently, 
this phenomenon of predicting the results of an 
instruction execution is extended to a sequence of 
instructions (i.e., basic block). A basic block is a 
sequence of instructions with one entry point at the 
beginning of the block and one exit at the end of the 
block. If the basic block of instructions accesses a 
limited number of register operands, it is possible to 
assume that the repeated executions of the block with 
the same register operands [5] (assuming the registers 
are unchanged between the executions) will yield the 
same results. 

It should be noted that the underlying theme in 
all these techniques is the ability of the architectures 
to execute instructions (or blocks of instructions) [6] 
in a speculative mode, and quashing the result when 
the speculation fails. While all speculative techniques 
increase IPC counts, it should be noted that the 
effective execution time of an application is not 
reduced (and in some cases it is increased to account 
for the time needed to undue an incorrect 
speculation). 

Our approach is a continuation of these 
techniques [7] [8], by extending the reuse of results 
(and prediction of results) from repeated execution of 
functions [9]. We believe that, at least for integer 



applications, functions are often invoked repeatedly 
with the same operands, producing the same results. 
We propose to eliminate the redundant function 
executions, improving the performance. It should be 
noted that our approach eliminates the execution of 
instructions comprising a function, and thus may 
result in lower IPC counts, but shorter execution 
times. 

In modern programming language, such as C, 
C++, or Java, most of the programming codes are 
constructed in well-structured modules such as 
functions, methods or procedures. The tendency of 
programming evolution is to make program code 
more readable and easy to maintain. In large 
programs, some functions may be called multiple 
times with the same input set and generate the same 
outputs. Our motivation is based on empirical 
observations suggesting that results of many 
functions, having the same inputs, can be reused 
instead of being executed repeatedly.  

Previously, we used ATOM [10] to instrument 
code to detect the function reuse phenomenon. Our 
results [11] show significant opportunities for 
function reuse, particularly for integer benchmarks. 
These studies were aimed at the feasibility and not 
intended to evaluate performance gains possible from 
reusing the results of function execution. In this paper 
we report our studies that involve modifications to a 
well-known computer architecture simulator called 
SimpleScalar. 

SimpleScalar [12] was written in 1992 as part of 
the Multiscalar project at the University of 
Wisconsin. In 1995, with Doug Burger’s assistance, 
the toolset was released as an open source 
distribution freely available to academic and 
noncommercial users. SimpleScalar LLC now 
maintains the suite of tools, and is distributed through 
SimpleScalar website - http://www.simplescalar.com. 

Since its release, SimpleScalar has become 
popular with researchers and instructors in the 
computer architecture research community. For 
example, in 2000 more than one-third of all papers 
published in top computer architecture conferences 
used SimpleScalar tools to evaluate their designs. 
The use of a common simulator infrastructure permits 
researchers to exchange designs as well as to repeat 
experiments to validate claims independently.  

SimpleScalar provides an infrastructure for 
computer system modeling that simplifies 
implementing hardware models capable of simulating 
complete applications. During simulation, model 
instrumentation measures the dynamic characteristics 
of the hardware model and the performance of the 
software running on it. All SimpleScalar modules use 
execution-driven simulation techniques. For 

computer system models, this process requires 
reproducing the execution of instructions on the 
simulated machine. A popular alternative, trace-
driven simulation employs a stream of prerecorded 
instructions to drive a hardware-timing model. This 
method uses a variety of hardware- and software-
based techniques—such as hardware monitoring, 
binary instrumentation, or trace synthesis—to collect 
instruction traces. This approach is often used for 
evaluating cache memory designs. Execution-driven 
simulation provides many advantages compared to 
trace-based techniques. Foremost, the approach 
provides access to all data produced and consumed 
during program execution. These values are crucial to 
the study of optimizations such as value prediction, 
compressed memory systems, and dynamic power 
analysis. In dynamic power analysis, the simulation 
must monitor the data values sent to all 
microarchitectural components such as arithmetic 
logic units and caches to gauge dynamic power 
requirements. The Hamming distance of consecutive 
data inputs defines the degree to which input bits 
change, which in turn causes transistor switching that 
consumes dynamic power. 

SimpleScalar includes several simulation 
modules [12] suitable for a variety of common 
architectural analysis tasks. The simulators range 
from sim-safe, a minimal SimpleScalar simulator that 
emulates only the instruction set, to sim-out-of-order, 
a detailed microarchitectural model with dynamic 
scheduling, aggressive speculative execution, and a 
multilevel memory system. All the simulators have 
fairly small code sizes because they leverage 
SimpleScalar’s infrastructure components, which 
provide a broad collection of routines to implement 
many common modeling tasks, including instruction-
set simulation IO emulation, discrete-event 
management, and modeling of common micro 
architectural components such as branch predictors, 
instruction queues, and caches. In general, the more 
detailed a model becomes, the larger its code size and 
the slower it runs due to increased processing for 
each instruction simulated. 

In order to prove our idea, we set up our 
experiments running on a modified SimpleScalar. 
More specifically, we modified Sim-Safe functional 
simulator business logic and introduced function 
reuse and prediction tables into the in-order execution 
pipeline to investigate the potential performance 
gains from function reuse for SPEC2000 integer 
benchmarks and MiBench embedded integer 
benchmarks. In the near future, we are planning to 
extend our experimentation to out-of-order execution 
and multithreaded systems. 



2. Related Work 
 
The performance of modern computer 

architectures that include multiple functional units is 
highly dependent on the instruction level parallelism 
(ILP) that can be extracted from a sequential 
program. The ILP is limited by control and data 
dependencies. Branch prediction tries to help with 
control dependencies. Numerous branch prediction 
techniques have been proposed and implemented in 
modern architectures. 

Value prediction in a similar vein attempts to 
overcome “true” data dependencies. In [13] the 
authors have studied the performance of different 
value predictors for speculative multithreaded 
processors. The paper proposed a value predictor 
called the increment predictor, and evaluated its 
performance for a clustered speculative multithreaded 
architecture. The goal of this technique is to predict 
the increment values, particularly for address 
computations. It was claimed that a 1-KB increment 
predictor achieves 73% prediction accuracy and a 
performance that is just 13% lower than that of a 
perfect predictor with infinite sized buffers. 

Sodani and Sohi [14] save the source and 
destination register values for each instruction and 
allow instruction execution to be skipped if the 
current instruction input values match previously 
cached values for that instruction. This schemes 
showed 34% reuse of instructions, and this reuse is 
directly dependent on the size of the reuse buffer. 
With sufficiently large buffers, program execution 
times were reduced by 20%. 

Jian Huang and David J. Lilja [15] have focused 
on basic-block reuse. They investigated the input and 
output values of basic blocks and found that these 
values were predictable. For SPEC benchmark 
programs evaluated, 90 percent of the basic blocks 
had fewer than four register inputs, five live register 
outputs, four memory inputs, and two memory 
outputs. About 16 to 41 percent of all the basic 
blocks were repeating earlier calculations when the 
programs are compiled with the -O2 optimization 
level in the GCC compiler. 

In our previous work [11], we set up a look-up 
table for functions to “cache” the behavior of 
functions, in order to find out how often repeated 
invocations of functions involve identical arguments. 
Function reuse is applicable only for side-effect free 
functions. By using HP(DEC) ATOM to instrument 
benchmark programs to evaluate our idea, we showed 
that the potential function reuse rate for SPEC2000 
integer benchmarks could range from 7% to 66%.  
ATOM permits us to trace the execution of programs 

with instrumented code. Thus our previous 
experiments allowed us to evaluate the frequency of 
function reuse. ATOM does not allow us to measure 
execution times for programs, since the 
instrumentation negatively affects the cycle counts. 
In this paper we show our results using SimpleScalar 
simulator. 
 
3. Motivation for Function Reuse 
 

Our work is motivated by our observations on 
recursive computations in the context of our 
multithreaded architecture known as SDF [16]. In our 
architecture a new thread is spawned for each 
function (including recursive functions) and basic 
blocks. We observed that the dynamically spawned 
threads sometimes replicate their computations since 
they are invoked with exactly the same input values 
as other threads. Our SDF architecture is based on 
dataflow, and functions are side-effect free, making it 
easier to implement the concept of function reuse. 
This is more difficult with imperative systems that 
use pointers and shared global variables. However 
compile time analysis can identify functions that are 
side-effect free. For now, we pre-analyze functions 
by hand for their freedom from side-effects, and 
identify candidates for reuse. 

Consider a simple recursive Fibonacci function 
shown below. 
 
 
 
 
 
 
 
 
 
 
 

In MIPS-like architecture, when a function call is 
reached, a stack frame is placed on the run-time 
stack.  As can be observed, the example above will 
create multiple copies of identical stack frames in 
order to complete a fib(n) since fib(n) and fib(n-1) 
both spawn fib(n-2). If we can create a look-up table 
containing the recursive calls by storing the input 
value of the previous functions and the results, then 
future calls with identical input values can be skipped 
in the pipeline. This innovation could not only save 
significant CPU computation time, but save power 
consumed by a program as well.  

#include <stdio.h> 
int fib (int); 
int main() 
{   int num = 30; 
     printf ("The value is %d .\n ", fib (num) ); 
     return 0; 
} 
int fib (int num) 
{  if (num == 1|| num == 2) return 1; 
       else 
       return fib (num-1) + fib (num-2); 
} 

 



As can be seen from the Table 1, at least for the 
function at hand, a significant performance can be 
gained by reusing the values produced by prior 
invocations of the function with identical input 
values. The table also shows how many times 
functions are invoked with identical values. We used 
modified SimpleScalar Sim-Safe simulator to obtain 
these results. 

 
4. Experiment Results 
 

Our modified SimpleScalar was installed on 
PC/Linux P4 2GHz machines. The reason for picking 
Sim-Safe simulator instead of Sim-Out-of-Order is 
due to its simpler pipeline structure with all necessary 
functional behaviors. We are planning to extend our 

experimentation to out-of-order execution and 
multithreaded systems in the near future. 
 
4.1. Benchmarks 
 

Benchmark programs analyzed in this paper are 
listed in Table 2 along with their inputs. There are 
four integer benchmark programs (dijkstra, 
rawcaudio, bit counts, quick sort) from MiBench, 
two from SPEC 2000 (parser, 176.gcc) and five 
integer programs from SPEC ‘95 suite (go, m88ksim, 
vortex, ijpeg and perl). We also included Fibonacci 
in our discussions. These programs run either to 
completion or up to 4 billion instructions. All the 
programs were compiled using GNU gcc (version 
2.6.3).

_____________________________________________________________________________ 
Table 1. Function reuse for Fibonacci function 

 
Table 2. Benchmark Programs Used 

Benchmark Name Benchmark Names Input 
 Fibbonnacci in 

Dijkstra Large 
Rawcaudio Large 
Bit Count Large 

 
MiBench 

Quick sort Large 
Parser Ref.in (training) SPEC ‘2000 
Gcc 200.i (reference) 
Perl Scrabbl.in (training) 
Ijpeg Vigo.ppm (training) 
Vortex Vortex.in (training) 
M88kSim Ctl.in (reference) 

 
 
SPEC ‘95 

Go Null.in (reference) 
_____________________________________________________________________________ 

4.2 Experiments and Results 
 
We performed several experiments to evaluate 

the concept of dynamic function reuse. Here we only 
concentrate on some key initial results for some 
sample configurations of the proposed mechanisms. 
We conducted experiments to discover how often 
functions are invoked with the same input arguments 

Figure 1 shows how often functions are invoked 
with the same inputs as prior invocations. The reuse 

buffer was designed with unlimited capacity to 
capture all the repeated function invocations. The 
data shows that for the benchmarks examined, 
between 7.29% to 67.7% function invocations can be 
skipped by using buffered function results. This 
indicates that there is a great potential for function 
reuse in improving execution performance of not 
only larger benchmarks such as SPEC programs but 

 
Function 

 
Clock Cycles 

(Without reuse) 

 
Clock Cycles 
(With reuse) 

 
# times the 

Function is Called 

# times the 
Function is 

Reused with 
same Inputs 

Fib (10) 31,124 10,200 895 609 
Fib (20) 3,034,273 1,137,378 980,560 637,364 
Fib (30) 290,056,432 98,456,320 920,876,456 616,987,225 



also of small embedded integer such as MiBench. In 
fact, Figure 1 shows that small integer benchmarks 
always generate high and stable function reuse rates. 
Since CPU computation time is a key metric of 
interest to computer systems designers, the next 
experiment we conducted on SimpleScalar is to show 
how much CPU time could be actually saved 
compared to normal executions without function 
reuse. At first, we assume the function reuse look-up 
time takes one clock cycle. This presents an upper 
limit on achievable performance gains.  The speedup 
shown indicates the comparison between benchmark 
execution with function reuse and without function 
reuse. 

Function-reuse buffer is usually a device similar 
to a data cache. The speed of its decision-making 
depends on its internal logic design. In order to see 
how the buffer access speed impacts the system 
performance (CPU time saved), we repeated the 
experiment by setting the look-up time (to determine 
if a function execution can be skipped) to 10 clock 
cycles. Most functions usually contain a large 
number of instructions, consuming more 10 cycles. 
Comparing the data in Table 3 with the data in Table 
4, we note that the speedup decrease due to increased 
buffer look-up time is only slight.  

 

_____________________________________________________________________________ 
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Figure 1. Function Reuse Rate 
Table 3. Execution Speedup     Table 4. Execution Speedup   

      Achieved with one cycle     Achieved with ten cycles  
 
 
 
 
 
 
 
 
 
 
 
 

___________________________________________________________________________ 
In the previous experiments, the reuse buffer size 

was assumed unlimited in size. In real 
microprocessor environment we need to rely on finite 
sized tables or buffers to cache functions. In order to 
simulate the impact of finite sized buffers, we treat 
the buffer as a cache and explore different sizes and 
associativities for the buffer. We used 128, 256, 512 
and 1024 entry reuse buffers (with sufficient width to 

cache all input arguments for functions and results). 
In Figure 2, we show the speedup of using direct-
mapped cache as the buffer. In Figure 3 we show 
results using 2-way set-associative reuse buffers. 
Figure 4 shows the data for fully associative reuse 
buffers. Note that the data in Figures 2-4 reflect the 
speedup of function reuse. 

 

Benchmark Speedup 
Fib 3.23 

Dijkstra 1.83 
Rawcaudio 1.81 
Bit Count 1.81 
Quick Sort 1.67 

Parser 1.71 
Gcc 1.40 
Perl 1.22 
Ijpeg 1.27 

Vortex 1.42 
M88ksim 1.38 

Go 1.37 

Benchmark Speedup 
Fib 3.10 

Dijkstra 1.76 
Rawcaudio 1.72 
Bit Count 1.74 
Quick Sort 1.55 

Parser 1.62 
Gcc 1.26 
Perl 1.20 
Ijpeg 1.23 

Vortex 1.32 
M88ksim 1.33 

Go 1.29 



Figure 2. Function reuses for direct-mapped reuse buffer 
 

Figure 3. Function reuses for 2-way set associative reuse buffer 
 

Figure 4. Function reuses for full-way set associative reuse buffer  



 
It is obvious that as the buffer size increases, 

we can capture more function invocations that can be 
reused. When higher set associtivities are used, 
conflicts in storing information about invoked 
functions are minimized. This is reflected in higher 
speedup of reuse in Figures 3 and 4 when compared 
to that in Figure 2. Interestingly, Figure 4 does not 
show significant improvement in function reuse 
speedup since larger buffer size (such as 1024 
entries) of 2-way set associative reuse buffer are 
adequate for our purpose.  This behavior is similar to 
that observed with set associative data caches. 
 
5. Micro-architecture and scheme with 
reuse buffer 
 

In this section we outline how the concept of 
function reuse can be incorporated into modern 
architecture pipelines. Function reuse is a non-
speculative technique that exploits (dynamic) 
redundancy in programs by obtaining results of 
functions based on their prior executions, and thereby 
skipping repeated executions. The organization of the 
reuse buffer is shown in Figure 5. Figure 6 shows a 
pipeline with function reuse. When a function is first 
executed, the signature of the function and its results 
are stored in a hardware structure called a Reuse 
Buffer (Figure 5). The buffer is indexed by the 
program counter of the function call (such as JAL or 
JSR). The reuse buffer is accessed concurrently with 
instruction fetch. If an entry is found (indicating that 
the instruction is a function call), the entry must be 
checked for matching input values. Function 
arguments are defined in registers based on 
programming convention used by the compiler. For 
example on most MIPS based systems; arguments are 
available in registers R4-R7. When a function with 
the same inputs is encountered again, its previous 
results are read from the buffer and they are directly 
saved in the registers designated for function results 
(e.g., R2 and R3 in MIPS convention). When this 
occurs, the function call is squashed and the program 
is continued from the instruction beyond the return 
(by simply incrementing the program counter). When 
function is not reused, a new entry for the function 
with new arguments is cached in the buffer, and 
results of the function execution (when return 
instruction is committed) are added to the buffer for 
possible future reuse. The function results are 
available in specified registers (R2 and R3 in MIPS). 
 
 

 
 

Figure 5. Reuse Buffer Entry 
                     
      

 
 

Figure 6. Function reuse architecture  
 
6. Conclusions 
 

In this paper we verified the concept of dynamic 
function reuse on modified SimpleScalar simulator 
with our hardware device, function reuse buffer 
incorporated in it. This research continues recent 
trends in architecture that have investigated 
speculation, branch prediction, value and address 
prediction, instruction reuse and basic block reuse. 
Function reuse is applicable for side-effect free (or 
pure) functions. Our results show that the function 
reuse idea is not only applicable in complex integer 
benchmark such as SPEC 2000 but works for small 
integer benchmark MIBench as well.  Our studies 
with integer benchmarks indicate the following: 

1. There is a great potential for exploiting 
function reuse. 

2. The performance gains depend on the size and 
organization of the reuse buffer. 

3. Function reuse look-up time does not have a 
significant impact on system performance.  

We believe that object-oriented programming 
promotes code reuse, which is the reason for function 
reuse. We proposed a high level architecture for 
implementing the function reuse concept. In order to 
fully exploit the idea we need to calculate the power 
consumption savings since power is a major issue 
with embedded systems.  We will further extend the 
idea to include function prediction (instead of reuse) 
in a multithreaded environment. We also plan to 
extend our function reuse even further to thread level 
reuse in the future. 
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