
Performance Enhancement by
Eliminating Redundant Function Execution

Peng Chen, Krishna Kavi and Robert Akl

Computer Science and Engineering Department
University of North Texas

{pc0043, kavi, rakl}@cs.unt.edu

Abstract

Programs often call the same function with the
same arguments, yielding the same results. We call
this phenomenon, “function reuse”. Previously, we
have shown such a behavior for some of the
SPEC2000 integer benchmarks using HP ATOM
instrumentation tools. However, this required
extensive analysis by hand, and assumptions
regarding side-effects caused by functions. In this
paper, we modified a well-known architecture
simulator, SimpleScalar, to analyze multiple
benchmarks to investigate the function reuse
behavior.
Key words. Function reuse, Speculative Execution,
Value Prediction, Instruction Reuse, Basic Block
Reuse, Instruction Level Parallelism, SimpleScalar

1. Introduction

In modern computer systems, CPUs are endowed
with multiple processing elements (such as multiple
floating point and integer arithmetic units, memory
access units, branch units). The goal then becomes
the execution of multiple instructions per cycle, as
characterized by the desire to increase Instructions
Per Cycle (IPC) executed by processing elements.
The basic idea is to execute “independent”
instructions from a program in parallel, potentially in
an order other than that defined by the program
sequencing. It was soon discovered that insufficient
instruction level parallelism (ILP) existed in a single
thread, leading to the utilization of multiple threads
(either from the same program or from a workload
consisting of different applications running on the
CPU). Modern processors also rely on concepts such
as speculative execution of instructions based on
branch prediction techniques. Such techniques do
increase IPC, but do not necessarily increase the
number of useful instructions executed.

Related to branch prediction, that aims to predict
the path a program sequence takes, is value
prediction. Value prediction [1] originally predicted
that “load” instructions that read data from a memory

location, return the same value as a previous memory
access to the same address. Since memory accesses
take much longer than other instructions [2], reusing
a previously fetched value (based on the prediction
that the values are the same) can permit the CPU to
achieve higher IPC counts. Techniques such as “trace
caches” [3] can help with value prediction, since
trace caches retain histories of execution of
instructions. As a next step in this trend, one can use
prediction for memory addresses [4] since the
addresses of array elements often differ by a constant
displacement; and even predicting that an arithmetic
instruction (such as an ADD) produces the same
result as a prior execution of the instruction,
particularly involving loops where the same
instruction is executed repeatedly, with the same
register operands, (provided that the registers are not
modified). While compiler optimizations move loop
invariant code out of a loop, some invariant code
cannot be detected at compile time. More recently,
this phenomenon of predicting the results of an
instruction execution is extended to a sequence of
instructions (i.e., basic block). A basic block is a
sequence of instructions with one entry point at the
beginning of the block and one exit at the end of the
block. If the basic block of instructions accesses a
limited number of register operands, it is possible to
assume that the repeated executions of the block with
the same register operands [5] (assuming the registers
are unchanged between the executions) will yield the
same results.

It should be noted that the underlying theme in
all these techniques is the ability of the architectures
to execute instructions (or blocks of instructions) [6]
in a speculative mode, and quashing the result when
the speculation fails. While all speculative techniques
increase IPC counts, it should be noted that the
effective execution time of an application is not
reduced (and in some cases it is increased to account
for the time needed to undue an incorrect
speculation).

Our approach is a continuation of these
techniques [7] [8], by extending the reuse of results
(and prediction of results) from repeated execution of
functions [9]. We believe that, at least for integer

applications, functions are often invoked repeatedly
with the same operands, producing the same results.
We propose to eliminate the redundant function
executions, improving the performance. It should be
noted that our approach eliminates the execution of
instructions comprising a function, and thus may
result in lower IPC counts, but shorter execution
times.

In modern programming language, such as C,
C++, or Java, most of the programming codes are
constructed in well-structured modules such as
functions, methods or procedures. The tendency of
programming evolution is to make program code
more readable and easy to maintain. In large
programs, some functions may be called multiple
times with the same input set and generate the same
outputs. Our motivation is based on empirical
observations suggesting that results of many
functions, having the same inputs, can be reused
instead of being executed repeatedly.

Previously, we used ATOM [10] to instrument
code to detect the function reuse phenomenon. Our
results [11] show significant opportunities for
function reuse, particularly for integer benchmarks.
These studies were aimed at the feasibility and not
intended to evaluate performance gains possible from
reusing the results of function execution. In this paper
we report our studies that involve modifications to a
well-known computer architecture simulator called
SimpleScalar.

SimpleScalar [12] was written in 1992 as part of
the Multiscalar project at the University of
Wisconsin. In 1995, with Doug Burger’s assistance,
the toolset was released as an open source
distribution freely available to academic and
noncommercial users. SimpleScalar LLC now
maintains the suite of tools, and is distributed through
SimpleScalar website - http://www.simplescalar.com.

Since its release, SimpleScalar has become
popular with researchers and instructors in the
computer architecture research community. For
example, in 2000 more than one-third of all papers
published in top computer architecture conferences
used SimpleScalar tools to evaluate their designs.
The use of a common simulator infrastructure permits
researchers to exchange designs as well as to repeat
experiments to validate claims independently.

SimpleScalar provides an infrastructure for
computer system modeling that simplifies
implementing hardware models capable of simulating
complete applications. During simulation, model
instrumentation measures the dynamic characteristics
of the hardware model and the performance of the
software running on it. All SimpleScalar modules use
execution-driven simulation techniques. For

computer system models, this process requires
reproducing the execution of instructions on the
simulated machine. A popular alternative, trace-
driven simulation employs a stream of prerecorded
instructions to drive a hardware-timing model. This
method uses a variety of hardware- and software-
based techniques—such as hardware monitoring,
binary instrumentation, or trace synthesis—to collect
instruction traces. This approach is often used for
evaluating cache memory designs. Execution-driven
simulation provides many advantages compared to
trace-based techniques. Foremost, the approach
provides access to all data produced and consumed
during program execution. These values are crucial to
the study of optimizations such as value prediction,
compressed memory systems, and dynamic power
analysis. In dynamic power analysis, the simulation
must monitor the data values sent to all
microarchitectural components such as arithmetic
logic units and caches to gauge dynamic power
requirements. The Hamming distance of consecutive
data inputs defines the degree to which input bits
change, which in turn causes transistor switching that
consumes dynamic power.

SimpleScalar includes several simulation
modules [12] suitable for a variety of common
architectural analysis tasks. The simulators range
from sim-safe, a minimal SimpleScalar simulator that
emulates only the instruction set, to sim-out-of-order,
a detailed microarchitectural model with dynamic
scheduling, aggressive speculative execution, and a
multilevel memory system. All the simulators have
fairly small code sizes because they leverage
SimpleScalar’s infrastructure components, which
provide a broad collection of routines to implement
many common modeling tasks, including instruction-
set simulation IO emulation, discrete-event
management, and modeling of common micro
architectural components such as branch predictors,
instruction queues, and caches. In general, the more
detailed a model becomes, the larger its code size and
the slower it runs due to increased processing for
each instruction simulated.

In order to prove our idea, we set up our
experiments running on a modified SimpleScalar.
More specifically, we modified Sim-Safe functional
simulator business logic and introduced function
reuse and prediction tables into the in-order execution
pipeline to investigate the potential performance
gains from function reuse for SPEC2000 integer
benchmarks and MiBench embedded integer
benchmarks. In the near future, we are planning to
extend our experimentation to out-of-order execution
and multithreaded systems.

2. Related Work

The performance of modern computer

architectures that include multiple functional units is
highly dependent on the instruction level parallelism
(ILP) that can be extracted from a sequential
program. The ILP is limited by control and data
dependencies. Branch prediction tries to help with
control dependencies. Numerous branch prediction
techniques have been proposed and implemented in
modern architectures.

Value prediction in a similar vein attempts to
overcome “true” data dependencies. In [13] the
authors have studied the performance of different
value predictors for speculative multithreaded
processors. The paper proposed a value predictor
called the increment predictor, and evaluated its
performance for a clustered speculative multithreaded
architecture. The goal of this technique is to predict
the increment values, particularly for address
computations. It was claimed that a 1-KB increment
predictor achieves 73% prediction accuracy and a
performance that is just 13% lower than that of a
perfect predictor with infinite sized buffers.

Sodani and Sohi [14] save the source and
destination register values for each instruction and
allow instruction execution to be skipped if the
current instruction input values match previously
cached values for that instruction. This schemes
showed 34% reuse of instructions, and this reuse is
directly dependent on the size of the reuse buffer.
With sufficiently large buffers, program execution
times were reduced by 20%.

Jian Huang and David J. Lilja [15] have focused
on basic-block reuse. They investigated the input and
output values of basic blocks and found that these
values were predictable. For SPEC benchmark
programs evaluated, 90 percent of the basic blocks
had fewer than four register inputs, five live register
outputs, four memory inputs, and two memory
outputs. About 16 to 41 percent of all the basic
blocks were repeating earlier calculations when the
programs are compiled with the -O2 optimization
level in the GCC compiler.

In our previous work [11], we set up a look-up
table for functions to “cache” the behavior of
functions, in order to find out how often repeated
invocations of functions involve identical arguments.
Function reuse is applicable only for side-effect free
functions. By using HP(DEC) ATOM to instrument
benchmark programs to evaluate our idea, we showed
that the potential function reuse rate for SPEC2000
integer benchmarks could range from 7% to 66%.
ATOM permits us to trace the execution of programs

with instrumented code. Thus our previous
experiments allowed us to evaluate the frequency of
function reuse. ATOM does not allow us to measure
execution times for programs, since the
instrumentation negatively affects the cycle counts.
In this paper we show our results using SimpleScalar
simulator.

3. Motivation for Function Reuse

Our work is motivated by our observations on
recursive computations in the context of our
multithreaded architecture known as SDF [16]. In our
architecture a new thread is spawned for each
function (including recursive functions) and basic
blocks. We observed that the dynamically spawned
threads sometimes replicate their computations since
they are invoked with exactly the same input values
as other threads. Our SDF architecture is based on
dataflow, and functions are side-effect free, making it
easier to implement the concept of function reuse.
This is more difficult with imperative systems that
use pointers and shared global variables. However
compile time analysis can identify functions that are
side-effect free. For now, we pre-analyze functions
by hand for their freedom from side-effects, and
identify candidates for reuse.

Consider a simple recursive Fibonacci function
shown below.

In MIPS-like architecture, when a function call is
reached, a stack frame is placed on the run-time
stack. As can be observed, the example above will
create multiple copies of identical stack frames in
order to complete a fib(n) since fib(n) and fib(n-1)
both spawn fib(n-2). If we can create a look-up table
containing the recursive calls by storing the input
value of the previous functions and the results, then
future calls with identical input values can be skipped
in the pipeline. This innovation could not only save
significant CPU computation time, but save power
consumed by a program as well.

#include <stdio.h>
int fib (int);
int main()
{ int num = 30;
 printf ("The value is %d .\n ", fib (num));
 return 0;
}
int fib (int num)
{ if (num == 1|| num == 2) return 1;
 else
 return fib (num-1) + fib (num-2);
}

As can be seen from the Table 1, at least for the
function at hand, a significant performance can be
gained by reusing the values produced by prior
invocations of the function with identical input
values. The table also shows how many times
functions are invoked with identical values. We used
modified SimpleScalar Sim-Safe simulator to obtain
these results.

4. Experiment Results

Our modified SimpleScalar was installed on
PC/Linux P4 2GHz machines. The reason for picking
Sim-Safe simulator instead of Sim-Out-of-Order is
due to its simpler pipeline structure with all necessary
functional behaviors. We are planning to extend our

experimentation to out-of-order execution and
multithreaded systems in the near future.

4.1. Benchmarks

Benchmark programs analyzed in this paper are
listed in Table 2 along with their inputs. There are
four integer benchmark programs (dijkstra,
rawcaudio, bit counts, quick sort) from MiBench,
two from SPEC 2000 (parser, 176.gcc) and five
integer programs from SPEC ‘95 suite (go, m88ksim,
vortex, ijpeg and perl). We also included Fibonacci
in our discussions. These programs run either to
completion or up to 4 billion instructions. All the
programs were compiled using GNU gcc (version
2.6.3).

Table 1. Function reuse for Fibonacci function

Table 2. Benchmark Programs Used

Benchmark Name Benchmark Names Input
 Fibbonnacci in

Dijkstra Large
Rawcaudio Large
Bit Count Large

MiBench

Quick sort Large
Parser Ref.in (training) SPEC ‘2000
Gcc 200.i (reference)
Perl Scrabbl.in (training)
Ijpeg Vigo.ppm (training)
Vortex Vortex.in (training)
M88kSim Ctl.in (reference)

SPEC ‘95

Go Null.in (reference)

4.2 Experiments and Results

We performed several experiments to evaluate

the concept of dynamic function reuse. Here we only
concentrate on some key initial results for some
sample configurations of the proposed mechanisms.
We conducted experiments to discover how often
functions are invoked with the same input arguments

Figure 1 shows how often functions are invoked
with the same inputs as prior invocations. The reuse

buffer was designed with unlimited capacity to
capture all the repeated function invocations. The
data shows that for the benchmarks examined,
between 7.29% to 67.7% function invocations can be
skipped by using buffered function results. This
indicates that there is a great potential for function
reuse in improving execution performance of not
only larger benchmarks such as SPEC programs but

Function

Clock Cycles

(Without reuse)

Clock Cycles
(With reuse)

times the

Function is Called

times the
Function is

Reused with
same Inputs

Fib (10) 31,124 10,200 895 609
Fib (20) 3,034,273 1,137,378 980,560 637,364
Fib (30) 290,056,432 98,456,320 920,876,456 616,987,225

also of small embedded integer such as MiBench. In
fact, Figure 1 shows that small integer benchmarks
always generate high and stable function reuse rates.
Since CPU computation time is a key metric of
interest to computer systems designers, the next
experiment we conducted on SimpleScalar is to show
how much CPU time could be actually saved
compared to normal executions without function
reuse. At first, we assume the function reuse look-up
time takes one clock cycle. This presents an upper
limit on achievable performance gains. The speedup
shown indicates the comparison between benchmark
execution with function reuse and without function
reuse.

Function-reuse buffer is usually a device similar
to a data cache. The speed of its decision-making
depends on its internal logic design. In order to see
how the buffer access speed impacts the system
performance (CPU time saved), we repeated the
experiment by setting the look-up time (to determine
if a function execution can be skipped) to 10 clock
cycles. Most functions usually contain a large
number of instructions, consuming more 10 cycles.
Comparing the data in Table 3 with the data in Table
4, we note that the speedup decrease due to increased
buffer look-up time is only slight.

0%

20%

40%

60%

80%

100%

F
ib

b
o

n
n

a
c

c
i

D
ijk

s
tra

R
a

w
c

a
u

d
io

B
it c

o
u

n
t

Q
u

ic
k

 S
o

rt

P
a

rs
e

r

G
c
c

P
e

rl

Ijp
e

g

V
o

rte
x

M
8
8
k
s
im

G
o

Percentage

Figure 1. Function Reuse Rate
Table 3. Execution Speedup Table 4. Execution Speedup

 Achieved with one cycle Achieved with ten cycles

In the previous experiments, the reuse buffer size

was assumed unlimited in size. In real
microprocessor environment we need to rely on finite
sized tables or buffers to cache functions. In order to
simulate the impact of finite sized buffers, we treat
the buffer as a cache and explore different sizes and
associativities for the buffer. We used 128, 256, 512
and 1024 entry reuse buffers (with sufficient width to

cache all input arguments for functions and results).
In Figure 2, we show the speedup of using direct-
mapped cache as the buffer. In Figure 3 we show
results using 2-way set-associative reuse buffers.
Figure 4 shows the data for fully associative reuse
buffers. Note that the data in Figures 2-4 reflect the
speedup of function reuse.

Benchmark Speedup
Fib 3.23

Dijkstra 1.83
Rawcaudio 1.81
Bit Count 1.81
Quick Sort 1.67

Parser 1.71
Gcc 1.40
Perl 1.22
Ijpeg 1.27

Vortex 1.42
M88ksim 1.38

Go 1.37

Benchmark Speedup
Fib 3.10

Dijkstra 1.76
Rawcaudio 1.72
Bit Count 1.74
Quick Sort 1.55

Parser 1.62
Gcc 1.26
Perl 1.20
Ijpeg 1.23

Vortex 1.32
M88ksim 1.33

Go 1.29

Figure 2. Function reuses for direct-mapped reuse buffer

Figure 3. Function reuses for 2-way set associative reuse buffer

Figure 4. Function reuses for full-way set associative reuse buffer

It is obvious that as the buffer size increases,

we can capture more function invocations that can be
reused. When higher set associtivities are used,
conflicts in storing information about invoked
functions are minimized. This is reflected in higher
speedup of reuse in Figures 3 and 4 when compared
to that in Figure 2. Interestingly, Figure 4 does not
show significant improvement in function reuse
speedup since larger buffer size (such as 1024
entries) of 2-way set associative reuse buffer are
adequate for our purpose. This behavior is similar to
that observed with set associative data caches.

5. Micro-architecture and scheme with
reuse buffer

In this section we outline how the concept of
function reuse can be incorporated into modern
architecture pipelines. Function reuse is a non-
speculative technique that exploits (dynamic)
redundancy in programs by obtaining results of
functions based on their prior executions, and thereby
skipping repeated executions. The organization of the
reuse buffer is shown in Figure 5. Figure 6 shows a
pipeline with function reuse. When a function is first
executed, the signature of the function and its results
are stored in a hardware structure called a Reuse
Buffer (Figure 5). The buffer is indexed by the
program counter of the function call (such as JAL or
JSR). The reuse buffer is accessed concurrently with
instruction fetch. If an entry is found (indicating that
the instruction is a function call), the entry must be
checked for matching input values. Function
arguments are defined in registers based on
programming convention used by the compiler. For
example on most MIPS based systems; arguments are
available in registers R4-R7. When a function with
the same inputs is encountered again, its previous
results are read from the buffer and they are directly
saved in the registers designated for function results
(e.g., R2 and R3 in MIPS convention). When this
occurs, the function call is squashed and the program
is continued from the instruction beyond the return
(by simply incrementing the program counter). When
function is not reused, a new entry for the function
with new arguments is cached in the buffer, and
results of the function execution (when return
instruction is committed) are added to the buffer for
possible future reuse. The function results are
available in specified registers (R2 and R3 in MIPS).

Figure 5. Reuse Buffer Entry

Figure 6. Function reuse architecture

6. Conclusions

In this paper we verified the concept of dynamic
function reuse on modified SimpleScalar simulator
with our hardware device, function reuse buffer
incorporated in it. This research continues recent
trends in architecture that have investigated
speculation, branch prediction, value and address
prediction, instruction reuse and basic block reuse.
Function reuse is applicable for side-effect free (or
pure) functions. Our results show that the function
reuse idea is not only applicable in complex integer
benchmark such as SPEC 2000 but works for small
integer benchmark MIBench as well. Our studies
with integer benchmarks indicate the following:

1. There is a great potential for exploiting
function reuse.

2. The performance gains depend on the size and
organization of the reuse buffer.

3. Function reuse look-up time does not have a
significant impact on system performance.

We believe that object-oriented programming
promotes code reuse, which is the reason for function
reuse. We proposed a high level architecture for
implementing the function reuse concept. In order to
fully exploit the idea we need to calculate the power
consumption savings since power is a major issue
with embedded systems. We will further extend the
idea to include function prediction (instead of reuse)
in a multithreaded environment. We also plan to
extend our function reuse even further to thread level
reuse in the future.

7. References

[1] A. Moshovos and G. Sohi; "Read-After-Read Memory
Dependence Prediction"; 32nd International Symposium on
Micro architecture (MICRO 32), pages 313-326, Nov 1999

[2] B. Calder, G. Reinman, and D. Tullsen; "Selective
Value Prediction"; 26th International Symposium on
Computer Architecture, pages 64-74, May1999

[3] F. Gabbay and A. Mendelson; "Can Program Profiling
Support Value Prediction"; International Symposium on
Microarchitecture (MICRO 97), December 01-03, pages
270-280,1997

 [4] J. Huang, Y. Choi, and D. Lilja; "Improving Value
Prediction by Exploiting Operand and Output Value
Locality"; University of Minnesota Technical Report:
HPCA-99-06, pages 106-114, June 1999

[5] J. Huang and D. Lilja; "Improving Instruction-Level
Parallelism by Exploiting Global Value Locality";
University of Minnesota Technical Report: HPPC-98-12,
Oct 1998

[6] Martin Burtscher and Benjamin G. Zorn; “Prediction
Outcome History-basedConfidence Estimation for Load
Value Prediction”; Journal of Instruction-Level Parallelism
(JILP), Vol. 1, May 1999

[7] Stephen E. Richardson; “Caching Function Results:
Faster Arithmetic by Avoiding Unnecessary Computation”;
SMLI TR-92-1, September 1992

[8] Wall D. W., “Limits on instruction-level parallelism,”
Proc. of 4th Intl. Conf. on Architecture Support for
programming Languages and Operating Systems
(ASPLOS-4), April 1991, pp.176-188.

[9] A. Sodani and G. Sohi; "Dynamic Instruction Reuse";
24th International Symposium on Computer Architecture
(ISCA), pages 194-205, June1997

[10] ATOM User Manual PRELIMINARY DRAFT, June,
1995 Digital Equipment Corporation Maynard,
Massachusetts

[11] K.M. Kavi and P. Chen. “Dynamic function result
reuse”, Proceedings of the 11th International Conference on
Advanced Computing (ADCOM-2003), Coimbatore, India,
Dec. 17-20, 2003.

[12] D. Burger, T. Austin, and S. Bennett, “The
SimpleScalar Tool Set, Version 2.0,” Technical Report
1342, Computer Science Dept., Univ. of Wisconsin,
Madison, June 1997.

[13] Pedro Marcuello, Jordi Tubella, Antonio Gonzalez,
"Value Prediction for Speculative Multithreaded

Architectures”, page 230, 32nd Annual International
Symposium on Microarchitecture, 1999.

[14] A. Sodani and G. Sohi; "An Empirical Analysis of
Instruction Repetition"; 8th International Conference on
Architectural Support for Programming Languages and
Operating Systems (ASPLOS-VIII), Oct 1998

[15] J. Huang and D. Lilja; "Exploiting Basic Block Value
Locality with Block Reuse"; University of Minnesota
Technical Report: HPPC-98-09, 1998

[16] K.M. Kavi, R. Giorgi and J. Arul. “Scheduled
Dataflow: Execution paradigm, architecture and
performance evaluation”, IEEE Transactions on Computer,
Vol. 50, No. 8, pp 834-846, Aug. 2001.

