
Concurrency, Synchronization, Speculation - the Dataflow Way

Krishna Kavi, Domenico Pace and Charles Shelor

November 23, 2013

Abstract

This chapter provides a brief overview of dataflow, including concepts, languages, historical archi-
tectures, and recent architectures. It is to serve as an introduction to and summary of the development
of the dataflow paradigm during the past 45 years. Dataflow has inherent advantages in concurrency,
synchronization, and speculation over control flow or imperative implementations. However, dataflow
has its own set of challenges to efficient implementations. This chapter will address the advantages and
challenges of dataflow to set a context for the remainder of this issue.

1

Contents

1 Introduction 4

2 Dataflow Concepts 4
2.1 Dataflow Formalism . 4

3 Dataflow Languages 9
3.1 Dataflow Structures . 9
3.2 Id: Irvine Dataflow Language . 12
3.3 VAL . 13
3.4 SISAL . 14

4 Historical Dataflow Architectures 16
4.1 Dataflow Instructions . 16
4.2 Static Dataflow Architectures . 18
4.3 Dynamic Dataflow Architectures . 20
4.4 Explicit Token Store (ETS). 21
4.5 Dataflow Limitations . 22
4.6 Hybrid Dataflow/Controlflow Architectures . 24

5 Recent Dataflow Architectures 25
5.1 TRIPS . 26
5.2 Data-Driven Workstation Network . 27
5.3 Wavescalar . 28
5.4 TERAFLUX . 31
5.5 MAXELER . 32
5.6 Codelet . 32
5.7 Scheduled Dataflow . 33
5.8 Recent Architectures Summary . 35

6 Conclusions 36

2

Acronym Section Definition
AQ 5 Acknowledgement Queue of D2NOW
CU 5 Computing Unit in Codelet
D2NOW 5 Data-Driven Network of Workstations
DDM 5 Data Driven Multithreading model
DFE 5 DataFlow Engine in Maxeler
D-TSU 5 Distributed Thread Scheduling Unit in Teraflux
DU 5 Data cache Unit in TRIPS
EDGE 5 Explicit Data Graph Execution in TRIPS
EP 5.7 Execution Pipeline of SDF
ETS 4 Explicit Token Store
EU 5 Execution Unit in TRIPS
EXC 5.7 Execution Continuation of SDF
FP 4 Frame Pointer
FSS 2.1 Firing Semantic Sets
GM 5 Graph Memory of D2NOW
GU 5 Global control Unit in TRIPS
IP 4 Instruction Pointer
IU 5 Instruction cache Unit in TRIPS
L-TSU 5 Local Thread Scheduling Unit in Teraflux
NIU 5 Network Interface Unit of D2NOW
PE 5 Processing Element of WaveScalar
PLC 5.7 Pre-Load Continuation of SDF
PSC 5.7 Post-Store Continuation of SDF
RQ 5 Ready Queue of D2NOW
RU 5 Register Unit in TRIPS
SDF 5.7 Scheduled DataFlow
SISAL 2.1 Streams and Iteration in a Single Assignment
SM 5 Synchronization Memory of D2NOW
SP 5.7 Synchronization Pipeline of SDF
SU 5 Scheduling Unit in Codelet
SU 5.7 Scheduling Unit of SDF
TLS 5.7 Thread Level Speculation
TP 5 Threaded Procedure in Codelet
TRIPS 5 Tera-op Reliable Intelligently adaptive Processing System
TSU 5.7 Thread Scheduling Unit of SDF
TSU 5 Thread Synchronization Unit of D2NOW
VAL 2.1 Value based programming language
WTC 5.7 Waiting Continuation of SDF

Table 1: Table of Abbreviations

3

1 Introduction

Achieving high performance is possible when multiple activities (or multiple instructions) can be executed
concurrently. The concurrency must not incur large overheads if it is to be effective. A second issue that
must be addressed while executing concurrent activities is synchronization and/or coordination of the
activities. These actions often lead to sequentialization of parallel activities, thus defeating the potential
performance gains of concurrent execution. Thus, effective use of synchronization and coordination are
essential to achieving high performance. One way to achieve this goal is through speculative execution,
whereby it is speculated that concurrent activities do not need synchronization or coordination; or predict
the nature of the coordination. Successful speculation will reduce sequential portions of parallel programs;
but mis-prediction may add to execution times and power consumption since the speculatively executed
activities must be undone and the activity must be restarted with correct synchronization.

The dataflow model of computation presents a natural choice for achieving concurrency, synchroniza-
tion and speculations. In the basic form, activities in a dataflow model are enabled when they receive all
the necessary inputs; no other triggers are needed. Thus all enabled activities can be executed concurrently
if functional units are available. And the only synchronization among computations is the flow of data.
In a broader sense, coordination or predicate results can be viewed as data that enables or coordinates
dataflow activities. The functional nature of dataflow (eliminating side-effects that plague imperative
programming models) makes it easier to use speculation or greedy execution; unnecessary or unwanted
computations can be simply discarded without any need for complex recovery on mis-speculations.

In this chapter we will introduce well-understood dataflow models of computation in section 2. We will
review programming languages that adhere to dataflow principles in section 3. We will present historical
attempts at developing architectures implementing the dataflow models along with a discussion of the
limitations of dataflow encountered by these architectures in section 4. We will present some recent
variations of the dataflow paradigm that could potentially lead to efficient architectures in section 5.
Finally we will include our conclusions and prognosis on the future of the model as a viable alternative to
control-flow systems in section 6.

2 Dataflow Concepts

2.1 Dataflow Formalism

The dataflow model of computation is based on the use of graphs to represent computations and flow of
information among the computations. The signal processing community uses a visual dataflow model to
specify computations. Some examples of environments used by this community include Signal [8], [34],
Lustre [21], Ptolemy [10]. In this chapter our focus is on general-purpose programming and general-purpose
computer architectures. Hence we will not review programming models, languages or environments for
specific or restricted domains, however Lee [37] provides a good survey on such languages and models.

One of the earliest dataflow models is called Khan [25] process networks. A program in this model
consists of channels, processes, and links connecting these processes. Figure 1 shows an example program
and the corresponding graphical representation of the process network. In principle channels can be viewed
as arrays or lists (sequence of values). It is also possible to associate firing semantics with a process to
define necessary input sequences and non-determinism. We again refer the reader to the survey by Lee
[37]. A process takes the required sequences of inputs from its input channels and creates sequences on

4

f

g

k

h

X1 = i

X2 = f(X1,X3)

X5 = g1(X2)

X4 = g2(X2)

X7 = k1(X5)

X6 = k2(X5)

X8 = h2(X4,X6)

X3 = h1(X4,X6)

i X1

X2

X5

X3
X4

X6

X7

X8

1

1

1

2

2

2
ΣP

Figure 1: Khan Process Networks Example

output channels. To facilitate continuous execution and concurrency, one can view the sequences of data
on channels as partially ordered. A set of inputs may contain multiple, partially ordered inputs, where
the lack of ordering among subsequences allows for concurrency.

There have been several formalisms that have extended Khan process networks. We will use specific
notations to describe a process network, which resemble the most common view of dataflow graphs to
graphically represent computations. We will use the notations from [27] in the rest of this section.

A dataflow graph is a directed graph in which the elements are called links and actors [14]. In this
model actors (nodes) describe operations while links receive data from a single actor and transmit values
to one or more actors by way of arcs; arcs can be considered as channels of communication, while links
can be viewed as placeholders or buffers.

G = < A ∪ L, E>

where A = {a1, a2, ..., an} is the set of actors; L = {l1, l2, ..., lm} is the set of links and

E ⊆ (A X L) ∪ (L x A) is the set of edges connecting links and actors.

In its basic form, activities (or nodes) are enabled for execution when all input arcs contain tokens and
no output arcs contain tokens. However, if we consider arcs as (potentially infinite) buffers, as in Kahn’s
process networks, the condition related to output arcs can be removed. The values in these buffers can be
viewed as partially ordered sequences allowing for multiple invocations of activities. This concept is the
basis of tagged-token dataflow architectures.

The model described above, without semantic interpretation of activities has been shown to be iso-
morphic to free choice Petri nets [28]. In addition, it was used as a model for concurrent processes with
semantics of actors defined using predicate logic and using partial ordering of values at links [16], [29]. The
model was then used to derive conditions to assure liveness and safety properties of concurrent processes.
By attaching semantics with nodes (or activities), or describing the computation performed by the nodes

5

using some programming notation, dataflow graphs can be used for parallel programming. A hardware
schematic can also be viewed as a dataflow graph where the schematic components are dataflow nodes and
the signals on the schematic are the dataflow arcs bringing the outputs of generating nodes to the inputs
of receiving nodes.

To be useful as a general purpose programming model, we need to permit conditional operations
(such as if..then..else constructs). Thus we can view actors, graphically represented using nodes, as
belonging to one of three types: activities, predicates, gates (or conditional execution). Activities represent
computations that consume data on input arcs and produce data on output arcs. Predicates consume input
data and produce Boolean (true or false) outputs. Gates require two types of inputs: a Boolean input
and data inputs. Gates use the value of the Boolean input to decide how to process inputs or generate
outputs. Control arcs (which enter or leave control links) have tokens of type Boolean (true or false). Data
arcs (which enter or leave data links) have tokens of any data type (e.g., integer, real, or character). In
section 3.1 we will introduce how complex data structures such as arrays and structures can be handled
in dataflow languages and architectures.

Generalized Firing Semantic Sets (FSS). The basic firing rule adopted by most dataflow researchers
requires that all input arcs contain tokens and that no tokens be present on the output arcs. This
provides an adequate sequencing control mechanism when the nodes in dataflow graphs represent primitive
operations. However, if the nodes are complex procedures, or dataflow sub-graphs, more generalized firing
control for both input and output links is required. The rules can indicate which subset of input links of
an actor must contain values and which subset of output links of the actor must not contain any values
for enabling the actor for execution. The ability to enable actions using only subsets of inputs provides
flexible scheduling of activities; for example a node which represents a function or a thread may be allowed
to initiate execution with a minimum set of required inputs, while additional input are delivered later (but
before they are actually needed).

Graphical notations. For the purpose of this chapter, we will simplify the formalism and notations.
We will use the graphical representations shown in Figure 2 for activities, predicates, and gates. Using
these notations, we can think of writing dataflow programs. The first program shown in Figure 3 is a
single computation that does not use conditional statements.

A

Activities

O1 Ok

I1 Ij

P

Predicate

O1

I1 I2

T

T(ruth)
Gate

O

I1

C
F

F(alse)
Gate

O

I1

C
T F

Merge

C

O

I1 I2

T F

Switch

C

I

O2O1

Figure 2: Some graphical notations of Dataflow Actors

6

+ /

*

YX 10

C

A := X + Y
B := Y / 10
C := A * B

A B

Figure 3: A simple dataflow program example

The second example which is shown in Figure 4 represents how the conditional programming constructs
(a loop in this example) can be represented in dataflow. The graph computes the following:

sum =
N∑
i=1

f (i).

T F

T F

T F

T F

ƒ"(i)

+1
+

..

Final sum

≤ N

i = 1

Initially False Initially False

Initially False

sum = 0

Figure 4: A dataflow program example with a loop and function

As stated previously, an actor in a dataflow graph can actually represent a function or a module so
that we can construct more complex programs using simpler programs as sub-graphs.

The dataflow model of computation is neither based on memory structures that require inherent state
transitions nor does it depend on history sensitivity. Thus, it eliminates some of the inherent von Neumann

7

pitfalls described by Backus [7]. We will now describe how the dataflow model is natural for representing
concurrency, synchronization, and speculation. Several extensions to basic dataflow have been proposed so
that dataflow techniques can be used in a variety of applications, including the use of producer-consumer
synchronization, locks and barriers. However, in this section we will rely on the dataflow formalism already
introduced here.

Concurrency. An activity in dataflow is enabled when the necessary inputs are available on input arcs;
no other trigger is needed. Thus all activities that are enabled can execute concurrently provided sufficient
computational units are available. This should be contrasted with von Neumann (or control flow) model,
which sequences activities, typically using a program counter. In the simple dataflow program shown in
Figure 3 above, both the addition and division operations can be executed concurrently. Likewise, in the
second example in Figure 4 the sub-graph representing f (i) can be invoked concurrently for all values of
1 <= i <= N.

In addition to this concurrency, using flexible firing rules mentioned previously, activities represented
by sub-graphs (i.e., functions are threads) can be enabled upon receiving a subset of inputs, thus creating
an additional level of concurrency, similar to pipelining used in conventional systems.

Synchronization. The only synchronization among activities in dataflow is the data dependency. Thus
dataflow only includes true (or Read After Write, RAW) dependency. This is because the dataflow model
of computation is neither based on memory structures that require inherent state transitions nor does
it depend on history sensitivity: only values have meaning in dataflow and not storage locations. This
eliminates side-effects and false dependencies caused by the use of storage that can be modified several
times during a program execution. Imperative languages that do use variables for storing data values
cause anti (or Write After Read, WAR) and output (Write After Write, WAW) dependencies. These false
dependencies force strict order on the execution of activities based on the order in which variables are
accessed and modified. The correctness of a program requires that any read access to a variable must
return the most recently written value, in the order in which the activities are sequenced (or program
order). These false dependencies require complex compile time analyses and/or complex hardware.

Speculation or greedy execution. As stated above, use of variables that can be modified require
ordering of statements. In addition, in most modern imperative languages variables may be modified
indirectly using pointers. These aspects of imperative programs make it very difficult to determine which
activities (or functions, threads) can be executed concurrently, particularly when the dependencies cannot
be determined statically. When speculation is used with control flow models, it is necessary to buffer
values generated by activities that are enabled speculatively. These values must then be discarded and
the effects of the speculative computation must be undone when the speculation fails.

Since the dataflow model does not use variables, but only values, activities can be executed speculatively
or aggressively without waiting to completely determine data dependencies (even true dependencies). The
output of these speculatively executed activities may be wrong, but they cause no side-effects, and thus
can be safely discarded, and an instance of the activity with correct inputs can be initiated. In principle
it is possible to complete all possible speculative instances of activities and discard all mis-speculated
computations, provided sufficient resources are available. For example, the function f(i) in Figure 4 can
be invoked greedily for all values of i, and the results from invocations for i > N can be discarded.

8

3 Dataflow Languages

In this section we will discuss dataflow languages and structures used to implement complex types within
dataflow languages. An example is presented to show how dataflow languages can be used for typical
problems.

A language that implements the dataflow paradigm must have the following features:

• freedom from side effects;

• locality of effects;

• data dependencies equivalent to scheduling;

• single assignment of named values;

• efficient representation of data structures, recursion, and iteration;

Since scheduling is determined from data dependencies, it is important that the value of variables do
not change between their definition and their use. The only way to guarantee this behavior is to disallow
the reassignment of variables once their value has been assigned. Therefore, variables in dataflow languages
most obey the single-assignment rule [13]. This means that they are considered as named values rather
than variables. The implication of the single-assignment rule is that the compiler can represent each value
as one or more arcs in the resultant dataflow graph, going from the instruction that assigns the value to
each instruction that uses that value. An important consequence of the single-assignment rule is that the
order of statements in a dataflow language is not important. As long as there are no data loops in the
program, the definition of each value, can be placed in any order in the program.

Freedom from side effects is also essential if data dependencies are to determine scheduling. Most
languages that avoid side effects disallow global variables and scope rules. In order to ensure the validity
of data dependencies, a dataflow program does not permit a function to modify its own input arguments.
In addition, since there are no variables or storage locations containing data, the concept of using a pointer
to access a storage location is foreign to dataflow. This also eliminates side-effects caused by aliasing. This
approach leads to some issues when the program manipulates data structures like arrays.

3.1 Dataflow Structures

One of the key points in the implementation of an efficient dataflow system is that of data structures.
As described in the Dataflow Concepts section 2, the dataflow execution model specifies that all data is
represented by values, that once created, it cannot be modified. If a node wants to modify a value, it creates
a new token, containing new data which is identical to the original data, except for the element that had
to be modified. While this data model is perfectly adherent to the theoretical dataflow execution model
and for dataflow graphs that deal only with primitive data types, this approach is clearly unsatisfactory
for graphs that use more complex data structures, especially in the era of object-oriented programming.
The following paragraphs briefly describe some data structure models.

9

Direct Access method This scheme treats each array element as an individual (scalar) data token,
which eliminates the concept of an array or structures. A tag could be used to associate the value with a
specific array. Although this method is simple, it requires entire data structures be passed from one node
to the next or to be duplicated among different nodes.

Indirect Access method In an indirect access scheme, arrays are stored in special (separate) memory
units and their elements are accessed through explicit read and write operations. Arrays can be appended
with new values, and arrays (and elements of arrays) are accessed using pointers. Modified elements can
be made inaccessible by using reference counts with pointers (when the count becomes zero the elements
become inaccessible).The main disadvantages of this method are:

• O(log n) to access successive elements of an array;

• append operations are executed sequentially, this results in only one element of an array being
modified at a time which limits concurrency;

• a garbage collector is needed to manage elements whose count reaches zero.

Dennis’s method. Dennis’s method [24] was the first method to provide realistic data structures in a
dataflow context by proposing that the tokens in the dataflow program hold not the data itself, but rather
a pointer to the data. This schema uses a memory heap in the form of a finite, acyclic, directed graph
where each node represents either an elementary value or a structured value which behaves like an indexed
array. Each element of a structured value is, in turn, a node that represents either an elementary value
or a structured value. The pointers in the data tokens refer to one of this node and a reference count is
maintained. A node which is no longer referred to, either directly or indirectly, in the graph is removed
by an implicit garbage collector. This method behaves in the following way:

• whenever an elementary value is modified, a new node is simply added to the heap;

• whenever a structured value is modified, and there is more than one reference to the value, a new
root node is added to the heap, pointing to the same values as the original initial root node, with
the exception of the one value that was to have been modified for which a new node is created.

Figure 5 shows the effects of Dennis’s method on the modification of an array. The second element (b)
is modified; this leads to the creation of a new value (e). Since the element belongs to a structured value
(and assuming reference count > 1) a new root (B) is created that refers to the array [a, e, c]. Meanwhile,
value A remains unmodified, preserving the functional semantics of the model. This method prevents
copying a large amount of complex values. It also permits the sharing of identical data elements which
saves memory. However this method is not the best for all situations. For example, consider a dataflow
program that has two main sections. The first creates a 100-element array and populates it, one element
at a time. The second takes the array and reads the elements, one at a time. In this case, the second part
cannot begin to execute until the first completes its execution, even if it could read element 1 while the
first part is populating element 2 and so on. A program that could potentially take as few as 101 time
units to execute, takes 200 time units. These situations led to the development of I-structures.

10

A B

a b c e

Figure 5: Dennis Method for array access

I-structures. Arvind proposed I-structures for accessing large data structures in a dataflow paradigm
[5]. This method allows more flexible access to the data structures than Dennis’s method. A data structure
is created in memory, but its constituent fields are left blank. Each field can either store a value or be
“undefined”. A value can only be stored in a field that is currently undefined: I-structures adhere to the
single-assignment rule. Any attempt to read from an undefined field is deferred until that value becomes
available (that is, until a value is assigned to the field). By following this set of rules, a data structure can be
used by the rest of the program as soon as it is created while the population process continues. Meanwhile
consumers can begin to read from the structure. This method has a producer-consumer behavior. SDF
[30] uses this approach for memory management.

Hybrid scheme The idea behind the hybrid scheme [35] is to associate a template, called the structure
template, with each array. Each array is represented by a structure template and a vector of array elements.
A template is divided into the following fields:

• reference count field; used to keep track the number of hybrid structures created and destroyed
during program execution;

• two pointers to two different arrays;

• location field; a string of 1’s and 0’s where the length of the string equals the number of elements in
the array. Each location bit determines in which vector (“left” or “right”) the desired element resides;

• status bit (S); it used when accessing array elements.

Whenever an array is defined, a hybrid structure is created: the elements of the array are stored
sequentially in its vector, the reference count is set to one; the status bit is initialized to zero; and the left
pointer is linked to the vector. Since no modifications have been made, this hybrid structure is considered
to represent the original array. If we want to modify only one element, this method generates a new
template structure with its right pointer pointing to a vector containing only the modified element and its
left pointer pointing to the original structure template. In cases where an array is entirely updated, the
sharing is no longer needed and the dependence between original and modified arrays can be removed.

11

3.2 Id: Irvine Dataflow Language

Id is a dataflow language developed at the University of California-Irvine [4] and was designed to provide
a high-level programming language for the dynamic dataflow architecture proposed by Arvind. Id is a
block-structured expression-oriented single assignment language. An interpreter was designed to execute
Id programs on dynamic dataflow architectures. Data types in Id are associated with values and variables
are implicitly typed by the values they carry. Composite data types include both arrays and (record)
structures; and elements can be accessed using either integer indices or string values defining the name
of the element (for example, t["height"]). Structures are defined with two operators: Select and Append.
Select is used to get the value of an element, while Append is used to define a new structure by copying the
elements of the original structure and adding new values defined by the Append operation. Id programs
consist of side-effect free expressions. These expressions (or sub-expressions) can be executed in any order
or concurrently based on the availability of input data. Loops in Id can be easily understood from the
following example, which computes:

sum =
N∑
i=1

f (i).

(initial i ← 1; sum ← 0;
while i ≤ N do

new i ← i + 1;
new sum ← sum + f(i);

return sum)

Id also uses the concept of a new operation to define a new value associated with an expression. It
should be noted that a variable is not assigned a new value (like in conventional languages), but a new
value is generated. Variables are used only for the convenience of writing programs. It is also convenient
to remember that expressions in a loop can form recurrence expressions.

Procedures and functions in Id are pure functions and represent value(s) returned by the application of
the function on the input values. Recursive procedures can be defined by associating names with procedure
declarations as shown in the following:

y ← procedure f(n)
(if n = 0 then 1 else n * f(n - 1))

The procedure y now defines factorial recursively, and the procedure is invoked as: y(3).
The matrix multiply routine for Id is shown in figure 6. The inputs a , b are the input matrices and l ,

m , n are inputs giving the size of the matrices. Where a is l by m and b is m by n . The result matrix
will be l by n . A new matrix is created with the initial statement, setting c to the null value, Λ. The
for statement computes the rows of c. The new c[i] creates a new matrix c from the previous matrix
c by appending row i to form the new matrix. This row is created as a vector d that is initially given
a null value Λ. New elements are appended to d as they are computed in the third for statement. The
for statement nesting is similar to conventional imperative languages. The difference shows in the use of
the new nomenclature to indicate a new and separate value named s, d , or c; rather than overwriting
a value in an address s, d , or c. The inner expression from (initial s to return s) is generating and
returning a scalar value to its calling expression. The intermediate expression from (initial d to return d)

12

is collecting a scalar from each evaluation of the inner expression and appending it to the vector d . The
outer expression from (initial c to return c) is collecting row vectors from the intermediate expression and
appending them to the matrix c. No variable is ever overwritten, each value is created and then used in
the creation of the next value.

procedure (a, b, l, m, n)
(initial c ← Λ
for i from 1 to l do

new c[i] ← (initial d ← Λ
for j from 1 to n do

new d[j] ← (initial s ← 0
for k from 1 to m do

new s ← s + a[i,k] * b[k,j]
return s)

return d)
return c)

Figure 6: Matrix Multiply in Id

No translators for converting id programs to conventional (control-flow) architectures were developed;
therefore Id was used mostly by those with access to dynamic dataflow processors and Id interpreters.

3.3 VAL

VAL is a high level programming language developed at MIT [1], and can be viewed as a textual representa-
tion of dataflow graphs. VAL relies on pure functional language semantics to exploit implicit concurrency.
Since dataflow languages use single assignment semantics, implementation and use of arrays present unique
challenges. Array bounds are not part of the type declarations In VAL. Operations are provided to find
the range of indices for the declared array. Array construction in VAL is also unusual in order to improve
concurrency in handling arrays. It should be noted that maintaining the single assignment feature of
functional languages, traditional language syntax for accumulating values needs some changes as shown
by the eval plus a[i] semantics in the second example below. To fully express such concurrencies, VAL
provides parallel expressions in the form of forall. Consider the following examples:

forall i in [array_liml(a), array_limh(a)]
a[i] := f(i);

forall i in [array_liml(a), array_limh(a)]
eval plus a[i];

If one applies imperative semantics, both examples proceed sequentially. In the first case, the elements
of the array a are constructed sequentially by calling the function f(i) with different values of the index
i . In the second example we compute a single value representing the sum of the elements of the array a ,
representing the sequential accumulation of the result. In VAL, the construction of the array elements in
the first example can proceed in parallel since all functions in VAL are side-effect free. Likewise, the accu-

13

forall i in [array_liml(A), array_limh(A)], % range of A rows
j in [array_liml(B[array_liml(B)]),

array_limh(B[array_liml(B)])] % range of B cols
construct

forall k in [array_liml(B), array_limh(B)] % range of B rows
eval plus A[i,k] * B[k,j] % accumulate products

endall
endall

Figure 7: Matrix Multiply in VAL

mulation in the second example also exploits some concurrency since VAL translates such accumulations
into a binary tree evaluation.

In addition to loops, VAL provides sequencing operations, if-then-else and tagcase expressions. When
dealing with oneof data type, tagcase provides a means of interrogating values with the discriminating
unions.

VAL did not provide good support for input/output nor recursion. These language restrictions provided
a straightforward translation of programs to dataflow architectures, particularly static dataflow machines.
The dynamic features of VAL can be translated easily if the machine supported dynamic graphs, such as
the dynamic dataflow architectures.

A matrix multiplication to compute C = A * B is shown in VAL in figure 7. The use of forall indicates
there are no interactions among the iteration values for i and j . This allows expansion of the forall to
be parallelized. The array_liml and array_limh built-in functions extract the lower and higher bounds
of the array, respectively. Thus, i takes on all of the values of the indices for the rows of A. VAL does
not have two dimensional arrays, but uses nesting to have an array of arrays. Thus, j takes on all of the
values of the indices of the array that is the first row of B; which is the indices of the columns of B. The
construct function of VAL creates a new array with a range of i where each of those elements is an array
with a range of j of the base type of the A and B arrays.

Nested within the construct clause is another forall giving k the range of the rows of B (which should
match the columns of A). Where the construct created a matrix, the eval function of VAL creates a single
value by combining the elements accessed by the k indices. In this instance the plus indicates adding all
of the products across the values of k . Other eval or reduction operators include times, min, max, or,
and and. Notice that matrix C is not explicitly declared or named. Basically, the new matrix exists after
the second endall. If this code fragment was in a function it would return the new matrix to the calling
program. Alternately, this code could have been used in the declaration section of a let block where C :=
would precede the code and would receive the generated matrix as a named value.

3.4 SISAL

SISAL (Streams and Iteration in a Single Assignment) is perhaps the best-known dataflow language,
mostly because of the support provided by the designers [23]. SISAL was heavily influenced by the VAL
language. The SISAL compiler generates optimized C code as its intermediate representation and thus
could be run on any platform with a C compiler. The SISAL translator and run-time support software

14

are available for UNIX and other platforms from http://sisal.sourceforge.net/. SISAL programs consist
of one or more separately compilable units, which include a single program, plus any number of modules,
and interfaces as needed. A module is similar to a program but is not a starting point of execution. It
pairs with an interface to export some of its types and function names. SISAL supports scalar data types
and structures (records, unions, arrays and streams). A stream is a sequence of values produced in order
by one expression and consumed in the same order by one or more other expressions. SISAL permits the
creation of new values through the new notation. As can be seen in figure 8 each iteration of a loop assigns
a value to a new instance of the iteration control variable i using the (new i) semantics to respect the
single-assignment rule. This program implicitly constructs a stream of values inside the loop and returns
the product of the elements of the stream. The values of the stream are the values of (i + j): 7, 13. Thus
91 is returned by the loop. The example also illustrates that both the original value of i and the value of
new i are available at the same time. One way of viewing a SISAL for statement is that multiple instances
of the loop body are created and run in parallel with separate values for i .

Figure 8: SISAL stream

Another important characteristic of the SISAL language is the optimization in the reduction operation
using binary tree evaluations. SISAL has predefined reduction operations to evaluate sum, product, min
and max of a set of values. SISAL’s popularity is also due to the concept of modules and interfaces. The
interface shows the function templates that are visible publicly and the module defines the implementation
of the functions, providing the language with a data abstraction capability.

The ubiquitous matrix multiplication function is easily implemented in SISAL [12]. The interface to
the matrix multiplication function is described as:

interface MatrixRoutines;
type TwoDim = array [..,..] of type;
function MatMul(A, B: TwoDim returns TwoDim);

end interface;

The first line within the interface specification defines a new type named TwoDim which is an array
of two dimensions where the ..,.. indicates there are two unspecified dimensions within the array and each
element is of type, meaning any primitive SISAL type can form an array. This parameterized function
declaration is valid for integers of any size, reals, and double precision numbers. The specification requires
that the elements of A, the elements of B, and the elements of the returned array are all of the same
type. The second line defines the calling sequence for the matrix multiply function. It accepts values for
A and B, both of which are two dimensional arrays and returns a two dimensional array as a result. The
implementation of the matrix multiply is given as:

15

function MatMul(A, B: TwoDim returns TwoDim);
if size(A, 2) =̃ size(B, 1) then error[TwoDim]
else array[i in 1..size(A,1), j in 1..size(B, 2):

sum(A[i,..] * B[..,j])]
endif

end function

The first line of the function body determines if the matrices are compatible for multiplication by
requiring the size of the second dimension of A to be equal to the first dimension of B. One of the features
of SISAL is that every type has an error representation. New values can be immediately tested for an error,
or the value can continue to be processed, while the error status is propagated through subsequent steps,
allowing the locations of error processing to be controlled by the programmer. The second line creates a
new two dimensional array whose first dimension is the size of the first dimension of A and whose second
dimension is the size of the second dimension of B. The third line of the function body uses the SISAL
sum operator to accumulate all of the A[i,k] * B[k,j] products as the ".." nomenclature means all elements
within that dimension. Notice there are no for statements in the code; all distributions are implied and
no ordering is specified. SISAL uses the concept of distribution rather than iteration. This allows the
multiplication of the elements to be distributed to as many multipliers as the hardware can provide and
to accumulate the products to form each new array element through a tree reduction process.

Most operations on arrays, vectors, and streams in SISAL can be performed using just the dimension
extents. However, some operations, such as gaussian elimination, operate on varying subsets of one of the
dimensions based on another dimension. A for statement is used in these instances, but is implemented
as parallel, distributed loop bodies each with its local value for the iteration variable.

4 Historical Dataflow Architectures

In this section we will explore how a processor architecture can be designed to implement the dataflow
paradigm of execution. This section describes some early attempts at dataflow architectures. In section
4.5 we will explain why these early attempts were not commercially successful. More recent designs and
implementations of dataflow architectures are discussed in section 5.

4.1 Dataflow Instructions

The dataflow graph shown in figure 9 computes two simple arithmetic expressions (X+Y)*(A+B) and
(X-Y)/(A+B). We can write an assembly language program for this dataflow graph using a control flow
architecture as shown in figure 10 using MIPS like instructions. Now consider how the same graph can be
represented using a hypothetical dataflow instruction set as shown in figure 11.

We used the same order for both versions of the code in order to make the dataflow version correlate
to the MIPS version. In the dataflow version, the order of execution will depend on the arrival times of
the data and is not constrained to the list order of the instructions. In the control flow instructions, each
instruction is provided with operand locations for its inputs and outputs. For example the instruction
ADD R11, R2, R3 uses values currently stored in registers R2 and R3 as inputs and stores the result of
the operation in register R11. In contrast, the dataflow instruction ADD 8R, 9R is not provided with
input operands, but only the identification of the destination instruction receiving its results, namely

16

*

+ - +

/

X Y A B

(X+Y) * (A+B) (X-Y) / (A+B)

Figure 9: A simple dataflow program

1. LOAD R2,A ; load A into R2
2. LOAD R3,B ; load B into R3
3. ADD R11,R2,R3 ; R11 = A + B
4. LOAD R4,X ; load X into R4
5. LOAD R5,Y ; load Y into R5
6. ADD R10,R4,R5 ; R10 = X + Y
7. SUB R12,R4,R5 ; R12 = X - Y
8. MULT R14,R10,R11 ; R14 = (X+Y)*(A+B)
9. DIV R15,R12,R11 ; R15 = (X-Y)/(A+B)
10. STORE VAL1,R14 ; store first result to VAL1
11. STORE VAL2,R15 ; store second result to VAL2

Figure 10: MIPS Like Instructions

1. INPUT 3L ; get A, send to instr 3, left input
2. INPUT 3R ; get B, send to instr 3, right input
3. ADD 8R,9R ; A + B, send to instrs 8, right and 9, right
4. INPUT 6L,7L ; get X, send to instrs 6, left and 7, left
5. INPUT 6R,7R ; get Y, send to instrs 6, right and 7, right
6. ADD 8L ; X+Y, send to instr 8, left
7. SUB 9L ; X - Y, send to instr 9, left
8. MULT 10L ; (X+Y)*(A+B), send to instr 10, left
9. DIV 11L ; (X-Y)/(A+B), send to instr 11, left
10. OUTPUT VAL1 ; output first result to destination
11. OUTPUT VAL2 ; output second result to destination

Figure 11: Pure Dataflow Instructions

17

instructions 8 and 9 (the designation L and R with a destination are used to distinguish between left
and right inputs at the destination). Thus the ADD instruction waits for its input data to arrive (in
this example from instructions 1 and 2). The arrival of these inputs enables the instruction and when
completed, the instruction sends the result to instructions 8 and 9.

A second difference to notice between the control flow and dataflow instructions is that in the traditional
control flow architectures, instructions are executed in the order they appear. For example, instruction
7 is executed only after instruction 6 completes: a program counter keeps track of the next instruction
that should be enabled for execution. In the dataflow version, no such sequence is implied. Since both
instructions 6 and 7 receive their inputs at the same time (from instructions 4 and 5), they can be executed
concurrently.

The goal of this example is to illustrate how we can think of designing dataflow instructions: instruc-
tions facilitate the flow of data (or results) from one instruction to another. Since in the purest form of
dataflow, there are no variables or storage used, we introduced instructions such as INPUT and OUTPUT
for receiving inputs or sending outputs to other modules which are outside of the graph shown. In practical
implementations we will use storage for data but make sure that the data is defined only once (or apply
the single assignment principle).

The various dataflow architectures differ in how to pass data among instructions, where to save inputs
to an instruction while waiting for other inputs, if an instruction can be activated multiple times when
multiple versions of the inputs are received (i.e., from different loop iterations).

Classical Architectures. The classical architectures that implement the dataflow model are divided
into two categories: static and dynamic. The static approach allows that at most one instance of a node
is executable. A node becomes executable when all the input data are available and there are no tokens
on the output arc. The dynamic approach allows the simultaneous activation of multiple instances of a
node: this is possible because an arc is considered as a buffer that can contain multiple data items. To
differentiate the different instances of the node, a tag is associated with each token. The tag identifies the
context in which that particular token was generated. A node is considered executable when all the inputs
with the same tag are available. The static model has a simple mechanism to determine which nodes are
executable, but limits the performance in case of loops, since the iterations are performed one for each time
unit. The dynamic model allows a larger exploitation of parallelism: this advantage is possible thanks to
the tag model but also has a significant cost in creating and managing tags (matching mechanism). The
following subsections describe static and dynamic architectures.

4.2 Static Dataflow Architectures

The firing rule for a node is that a token has to be present on each input arc, and that there are no tokens
present on any of the output arcs. In order to implement this, acknowledge arcs are implicitly added to
the dataflow graph which go in the opposite direction to each existing arc and carry an acknowledgment
token. The major advantage of the static model is the great simplicity and speed in the detection of which
nodes are executable. Moreover, the memory can be allocated for each arc at compile time since each arc
will contain one or zero tokens. This implies that there is no need to use complex hardware: each arc can
be assigned to a particular piece of memory. Figure 12 shows the block diagram of the static architecture.

The Memory Section is a collection of memory cells. Each memory cell contains a data structure that
represents an instruction. An instruction template consists of the following fields (figure 12(b)):

18

Processing
Unit

Processing
Unit

Instruction
Cell

Instruction
Cell

Distribution
Network

Arbitration
Network

Control
Network

Control Tokens

Data
Tokens Operation

Packets

Processing
Section

opcode
flag 1 operand 1
flag 2 operand 2

Destination 1
.

Destination n

Figure 12: Static architecture(a)[23] and instruction template(b)

• opcode field;

• two fields contain the values inside tokens in the input arcs, each of which have an associated flag
that indicates whether the data is available. An instruction is executed when all the flags related to
inputs are set to one and all the flags on outputs are set to zero;

• a list of destination addresses for the output tokens.

The Processing Section is composed of 5 pipelined functional units, each of which performs operations,
forms output packets, and sends the resulting token to the memory section. The Arbitration Network sends
the data structures representing enabled instructions from the memory section to the processing section.
The Distribution Network transfers the output packets from the processing section to the memory section.
Finally, the Control Network reduces the load on the distribution network by transferring boolean values in
control tokens and acknowledge signals from the processing section to the memory section. Control tokens
convey values that are either true or false. A control token is generated by a special node, a decider, that
applies its associated predicate to values in its input arcs. Control tokens direct the flow of data tokens
by means of gates and merge actors as described in section 2.1. In spite of its simplicity, this model has
many serious problems. The addition of the acknowledge arcs considerably increases the data traffic in
the system (approximately 2 times). Since a node must wait for the arrival of the acknowledgment signals
to be executable, the time between two successive executions increases. This may affect the performance,
particularly in situations where there is not a high degree of parallelism. This model only allows an arc
to contain a single token which is its most significant limitation. A subsequent iteration of a loop cannot
start until the previous iteration has completed its execution even if there are no dependencies between
iterations. This constraint limits the amount of concurrency that is possible in the execution within loops.

19

4.3 Dynamic Dataflow Architectures

The dynamic approach exposes a higher degree of parallelism by allowing multiple invocations of a sub-
graph as is the case with loops. Only one copy of the graph is kept in memory, and the tags are used to
discern the token among different invocations. A tag is composed of the following fields:

• a field that uniquely identifies the context (instance) of a token(invocation ID);

• a number that identifies the iteration of the loop associated with a token (iteration ID);

• instruction address;

• an identifier that indicates whether the value contained in the token will be the left or right operand
of the instruction (port).

This information is commonly known as the color of the token. Unlike the static model, the dynamic
model represents each arc as a buffer that can contain any number of tokens, each with a different tag. In
this scenario, a node is executable when the same tag is found in all its input arcs.

It is important to note that the tokens are not ordered. This may lead to an execution order that is
different than the token’s entrance order in the buffer. However, the tag ensures that there are no conflicts
between tokens.

The tags themselves are generated by the system. The token invocation ID is unique for each subgraph.
The iteration ID is initially set to zero. When a token reaches the end of the loop and it is fed back at
the top of the loop, a special control operator increments the iteration ID. Whenever a token finally leaves
the loop, another control operator sets its iteration ID back to zero. Figure 13 shows the block diagram
of the dynamic architecture.

Program
Memory

Matching
Unit

Token Queue

Processing
Unit

Fetch
UnitMatched

Token
Sets

Data Tokens

Data Tokens
Enabled

Instructions

opcode

Literal/constant

Destination 1

.

Destination n
(b)

Invocation # Iteration # Instruction ID po
rt data

(c)(a)

Figure 13: Dynamic architecture(a) instruction template (b) and token structure (c) [36]

The matching unit is a memory that contains the tokens waiting to be consumed. This unit groups
the tokens that have the same tag. If there are tokens with the same tags, they are extracted from the
matching unit and passed to the fetch unit. In the fetch unit, tags uniquely identify an instruction to be
fetched from memory that contains the program. The instruction and its tokens (figure13(c)) form the

20

enabled instruction. The processing unit (PU) executes enabled instructions and produces the results.
Then PU sends the results to the matching unit through the token queue. The main issues with the
dynamic dataflow model relative to the static dataflow model are:

• overhead due to the process of comparing the tags;

• need for more memory, since each arc can contain multiple tokens.

The tag matching mechanism is the key aspect of the dataflow dynamic model. Various tests have shown
that the performance directly depends on the speed of the tag matching process. It should be noted
that set-associative cache memories were not available when the dynamic dataflow systems were originally
designed. Existence of such technologies could have greatly simplified the matching process of dynamic
dataflow architectures and increased their performance dramatically. The typical operations executed in
an execution cycle are:

1. recognize the executable nodes;

2. determine the operations that must be performed;

3. compute results;

4. generate and communicate the resulting token to destination nodes.

Compared to the execution cycle of a control-flow system, these operations incur higher overheads. For
example, the comparison of the tag is a more complex operation than incrementing the program counter.
Point 4 imposes an overhead which is comparable to the writing of the result in memory or in a register.

4.4 Explicit Token Store (ETS).

The problems described above have led to the introduction of the ETS model. Storage (called activation
frames) is allocated dynamically for all the tokens that can be generated by a code block (a code block
represents a function or a loop iteration). The utilization of memory locations is defined at compile time
while memory allocation takes place directly at runtime. A code block is represented by the pair <FP,
IP>, called a continuation, where FP is the pointer to the activation frame and IP is set initially to the
first statement in the block. A typical instruction specifies the opcode, an offset within the activation frame
where it checks the availability of inputs and one or more offsets, called displacements, which define the
instructions that will receive the result calculated by the node. Each displacement also has an associated
indicator (left / right) that specifies whether the result will be the left or right operand of the destination
instruction. Figure 14 shows an example of code block invocation with its instruction memory and frame
memory.

21

Figure 14: ETS code block[23]

When a token arrives at a node, in this case the node ADD, the IP points to the relative instruction
in the instruction memory. The system executes the process of comparing the inputs in the slot that is
specified by FP + r. If the slot is empty, the system writes the value in the slot and sets the presence bit
to indicate that the slot is full. If the presence bit is already set, it means that one of the two operands
of the instruction is already available, so the system can now execute the instruction. The steps that the
system performs are:

• extract the value, leaving the slot empty and free

• perform the operation of the instruction

• communicate the result token to the destination instructions according to the displacement

• update the instruction pointer.

For example, once the ADD instruction is completed, two tokens are generated: one is directed to the
instruction NEG with token <FP, IP +1, 3.55> and the other is directed to the instruction SUB with
token <FP, IP+2, 3.55>.

4.5 Dataflow Limitations

After describing some of the initial implementations of dataflow systems we can now discuss some of the
inherent limitations of the dataflow paradigm. While the dataflow model offers advantages in terms of

22

expressing concurrency and synchronization, dataflow is more difficult to implement using conventional
hardware technologies. These limitations can be summarized as the following:

• Difficulty in exploiting memory hierarchies

• Too fine grained computations - each instruction is an independent activity

• Asynchronous triggering of instructions

• Implementing imperative memory system and memory ordering

Localities and Memory Hierarchy: Since pure dataflow only operates on values, the values must be
communicated to functional units. Implementation of this communication can be very inefficient. Most
control processor designs rely on the use of memory hierarchies including multiple levels of cache memories.
Arithmetic functional units operate on registers, which are very fast devices for containing data. Control
flow architectures benefit from the concept of localities in using memory hierarchies; and the localities
are an artifact of control flow based sequencing (or ordering) of operations in the processor. Instructions
are sequenced by using a program counter. Although branch operations may change the sequence of
instructions; in most cases, it is easy to predict the location of the next instruction and data.

On the other hand, a dataflow model defines no such sequencing. Thus, it is difficult to predict which
instruction will be executed next. However, reordering of instructions of such a program based on certain
criteria [52] [50] can produce synthetic localities. The recurrent use of instructions (in different activation
frames) also causes the existence of temporal localities. Another ordering can be created on the basis
of their expected order. This can done by grouping instructions into execution levels (or E-levels [51]).
Instructions that become ready (i.e., all inputs are available) at the same time unit are said to be in the
same level. Instructions at level 0 for example, are ready for execution at time unit zero. Similarly, those
at level 1 become ready for execution at time unit one and so on. Instruction locality can be achieved using
the E-level ordering. Since the execution of an instruction may produce operands that may be destined to
the instructions in the subsequent blocks, we need to prefetch more than one block of operand locations
from the operand memory. We refer to these blocks as a working set. Block size and working set size are
optimized for a given cache implementation to achieve a desired performance. While the optimum working
set depends on the program, we have found that a block size of 2 instructions and working sets of 4 to 8
instructions yield significant performance improvements.

The locality for the operand cache is related to the ordering of the instructions in the instruction cache.
When the first instruction in a block is referenced, the corresponding block is brought into the instruction
cache. Simultaneously, operand locations for all the operands corresponding to the instructions in the
working set of these instructions are prefetched into the operand cache. As a result of this, the operand
cache will satisfy any subsequent references to the operand cache caused by the instructions within this
block. Note that the operand cache block consists of a set of waiting operands or empty locations for
storing the results. By prefetching, we ensure that future stores and matches caused by the execution of
instructions in the block will take place in the operand cache. These principles were used to design cache
memories with ETS architecture [26]

Granularity of Computations: Older dataflow architectures treated each dataflow activity as an in-
dependent thread of computation. This requires that each instruction or activity be uniquely identified
causing excessive overheads for finding and associating data with instructions. In most control flow ar-
chitectures; instructions are grouped into manageable entities such as functions, modules or threads. A

23

computation is responsible for executing such groups of instructions. In this case we can first identify the
group and then use offsets to identify individual instructions within the group. Dataflow programs can
also be grouped to create blocks, frames or threads, as is the case in some hybrid architectures described
later in section 4.6. However, the instructions within the group still use a data driven model of execution.
Other hybrid architectures, as will be described in section 4.6, that use dataflow synchronization at thread
level (a thread is enabled when it receives all its inputs) and uses sequential control flow for instructions
within a thread. This model is a compromise in order to fully benefit from modern technology advances,
and minimize overhead in managing fine-grained threads of computations.

Synchronous Execution: In control flow, instructions are not triggered when data is available; they are
executed using a program control. It is assumed that the data is already available when the instruction
is scheduled. The violation of this assumption is the cause for many problems associated with parallel
programs based on control flow languages. However this assumption allows for more efficient implementa-
tions. In dataflow, the data driven execution model causes asynchronous triggering of instructions. As can
be seen from the previous discussions on some dataflow architectures, an instruction requiring 2 inputs
will require two cycles through the processor pipeline: the first cycle simply stores the first input in some
location, while awaiting the second input. The second cycle, initiated when the second input arrives,
retrieves the previously saved input along with the instruction (or opcode and destinations) and executes
the instruction. To be practical, dataflow architectures must move away from a data driven paradigm and
use instruction driven paradigms like control flow at the execution unit level. The instruction driven model
requires space for saving inputs to instructions until they are scheduled, but each instruction requires only
one cycle to execute. Scheduled dataflow 5.7 relies on the instruction driven model of execution.

Memory Ordering: To be viable, dataflow processors must execute concurrent programs written using
imperative languages. Assuring correct execution of concurrent programs in these languages requires
adherence to the sequential consistency paradigm, which defines an order on memory accesses. Wavescalar
(described in section 5.3) proposes a solution for defining memory orders within the context of tagged token
dataflow architecture.

We will describe some recent architectures that have modified the pure dataflow model in order to
achieve practical implementations in section.5.

4.6 Hybrid Dataflow/Controlflow Architectures

The pure dataflow model eliminates WAR and WAW dependencies and exploits the parallelism inherent
in a program, but its performance is poor for applications having a low level of parallelism. Because of the
problems encountered in the pure dataflow model, researchers investigated various hybrid solutions. Most
of these models used an instruction clustering paradigm: various instructions are clustered together in a
thread to be executed in a sequential manner through the use of a conventional program counter. The
thread is enabled to run when the inputs necessary for its execution are available.

The spectrum of hybrid control-flow / dataflow systems range from simple extensions of the von Neu-
mann paradigm to nearly pure dataflow architectures where the level of execution granularity is increased.
In the pure dataflow model each machine-level instruction is seen as a thread. In a hybrid dataflow model
groups of instructions form threads that are executed through control-flow. The method of grouping in-
structions and the average number of instructions in a group differentiates the various hybrid systems.
Various projects based on this approach have shown that the dataflow model and the control-flow model
are not disjoint; but are the two extremes within a spectrum of computer architectures with hybrid models

24

occupying the middle of the spectrum. The following paragraphs will outline some approach for hybrid
architectures.

Coarse-Grain Dataflow: This approach is based onmacro instructions, activated according to dataflow
concepts. The individual instructions within the macro instruction are executed in a sequential manner.
Systems using this approach usually separate the token control phase from the execution phase through
the utilization of FIFO buffer. Dedicated microprocessors are usually used to support the execution phase.

Complex Dataflow: This technique is based on the use of machine-level complex instructions, for
example vector instructions. These instructions can be implemented through pipelines as in vector systems.
Structured data are accessed in block rather than by accessing the individual item. This approach differs
from the I-structure where each field of a structure is accessed individually from memory. The advantage of
this type of architecture is the ability to exploit the sub-instruction level parallelism, since sub-instructions
can be performed in parallel (or almost) within their complex instruction. Even in this case, the process
of enabling the execution and the execution itself is separated. The major difference compared to the
original dataflow model is that the tokens do not carry values. The data is collected and only used inside
the processing unit.

RISC Dataflow: Systems that use this approach support the execution of code written for conventional
control-flow systems. The basic aspects of this type of systems are:

• conventional RISC-like instructions;

• support for multithreading with the introduction of fork and join instructions to create and syn-
chronize threads;

• synchronization of memory accesses through the utilization of the I-structure semantic.

Threaded Dataflow: The idea behind this approach is the grouping of a certain number of instruc-
tions that are executed in a sequential manner. In particular each subgraph that exhibits a low level of
parallelism is identified and converted into a sequential thread. In this way, when a thread is executed it is
not necessary to perform the data availability verification process for all its instructions, but only for the
first. The instructions within a thread use registers to transmit data to other instructions. These registers
may be used by any instruction in the thread. The advantage of the threaded dataflow approach is that
those parts of the dataflow graph that do not exhibit good potential parallelism can be executed without
the associated overhead, while those that do show potential parallelism can take advantage of it. In this
type of architectures, the main issue is the implementation of an efficient mechanism for synchronization
between threads: ETS-like methods can be used for this.

5 Recent Dataflow Architectures

Recent improvements in computer technology (such as Network-on-a-chip and higher density integration)
and limitations to instruction and thread level parallelization within conventional control flow architectures
have led to a new interest in the dataflow computing model. The following sections describe some recent
dataflow-based projects.

25

5.1 TRIPS

The TRIPS [11][18] system employs a new instruction set architecture (ISA) called Explicit Data Graph
Execution (EDGE). Two defining features of EDGE ISA are block-atomic execution in which blocks
are composed of dataflow instructions and direct instruction communication within a block. An EDGE
microarchitecture maps each compiler-generated dataflow graph to a distributed execution substrate. The
TRIPS ISA aggregates up to 128 instructions in a block. The block-atomic execution model logically
fetches, executes, and commits each block as a single entity. Blocks communicate through registers and
memory. Within a block, direct instruction communication delivers results from producer to consumer
instructions in dataflow fashion. Figure 15 shows the TRIPS architecture.

CPU	 0
	 	

CPU	 1
	 E	 E	 E	 E	

E	

E	

E	

E	 E	 E	

E	 E	 E	

E	 E	 E	 D	

D	

D	

D
	

I	

I	

I	

I	

R	 R	 R	 R	 M	

M	

M	

M	

E	
Single-‐issue	 ALU
	 Full-‐integer	 and	 floa6ng	 point	 units
64	 instruc6on	 buffers	

D-‐cache	 D	

I	 I-‐cache	 banks	

32	 registers	 per	 bank	 x	 4	 threadsR

M Memory:	 DDR	 SDRAM

Figure 15: TRIPS microarchitecture[11]

Each TRIPS chip contains two processors and a secondary memory system, each interconnected by
one or more micro-networks. Each processor contains five types of units: one global control unit (GU),
16 execution units (EU), four register units (RU), four data caches (DU) and five instruction caches (IU).
The units communicate via six micro-networks that implement distributed control and data protocols.
The GU sends a block address to the IU which delivers the blocks’s computation instructions to the
reservation stations in the 16 execution units, 4 per unit as specified by the compiler. The IU also delivers
the register read/write instructions to reservation stations in the RU s. The RU s read values from the
global register file and send them to the EU s, initiating the dataflow execution. The commit protocol
updates the data caches and register file with the speculative state of the block. The GU uses its next
block predictor to begin fetching and executing the next block while previous blocks are still executing.
The prototype can simultaneously execute up to eight 128-instruction blocks giving it a maximum window
size of 1024 instructions. On simple benchmarks TRIPS outperforms the Intel Core 2 by 10% and using
hand-optimized TRIPS code, TRIPS outperforms the Core 2 by factor of 3 [18].

26

5.2 Data-Driven Workstation Network

D2NOW [33] is a parallel machine based on the data-driven multithreading (DDM) model of execution.
This model decouples the synchronization from the computation portions of a program allowing them to
execute asynchronously; similar to the decoupling used in SDF [30, 31]. This aspect provides effective
latency tolerance by allowing the computation processor to produce useful work, while a long latency
event is in progress. In the DDM model, scheduling of threads is determined at runtime based on data
availability: a thread is scheduled for execution only if all of its input data is available in the local memory
(dataflow paradigm). Figure 16 shows a DDM processing node.

Main	 Memory Processor	 	 DMA

RxQ

TxQ
	

NetQ

Synchroniza3on	
Memory

PPU	 Control
Unit

ACK
Queue

Graph	
Memory	

TIU	 Control	 Unit

Wai3ng	 Queue

Firing	 Queue

NIU
	

Post	 Processing	 Unit Thread	 Issue	 Unit

Figure 16: DDM processing node [33]

The processing node consists of a workstation augmented with the thread synchronization unit (TSU).
The computation processor communicates with the TSU via two queues: the Ready Queue (RQ) and
the Acknowledgement Queue (AQ). These queues are memory-mapped, there is no need for modifying
the processor or adding extra instructions. The RQ contains pointers to the threads that are ready for
execution. The AQ contains identification information and status of executed threads. The main storage
units in the TSU are the Graph Memory (GM) and the Synchronization Memory (SM). The GM contains
the informations related to the instructions, to the data memory and to the consumer threads. The SM
contains the number of input data items that are necessary for a thread. The processor reads the address
of the next thread to be executed from the RQ. After the processor completes the execution of a thread, it
stores in the AQ the identification number and status of the completed thread and then reads the address
of the next thread to be executed from the RQ. The control unit of the TSU fetches the completed threads
from the AQ, reads their consumers from GM and then updates the counter of input data needed of the
corresponding consumer threads in the SM. If any of these consumers are ready for execution, they are
placed in the RQ and wait for their turn to be executed.

27

D2NOW is built using Intel Pentium microprocessors connected through a fine-grained interconnection
network. The most interesting aspect of this architecture is the communication mechanism. Like the other
dataflow architectures the main problem is the overhead due to the communication between scheduling
quantums (in this case, threads). In order to tolerate the communication latency, the communication is
classified into three types: fine-grain (one data value per message); medium-grain (up to a few tens of values
per message); coarse-grain (hundreds to thousands of values per message). In the fine-grain mechanism all
the information is passed to the NIU (see figure 16). In the second mechanism the computation processor
stores data in a buffer within the NIU, the consumer thread’s identification as well as the starting address
and size of the memory block. In the background, an embedded processor together with a DMA engine
process the communication though the fine-grain interconnection network. The coarse-grain mechanism
utilizes an Ethernet network to support large block data transfers. In this way the latency due to the large
amount of data does not affect the transfers on the fine-grain network. For 16 and 32-node machines, the
observed speed up, compared to the sequential single node execution, is 14.4 and 26 respectively [33].

5.3 Wavescalar

WaveScalar [49, 48] is a tagged-token, dynamic dataflow architecture. The goal of this architecture is to
minimize the communication costs by ridding the processor of long wires and broadcast networks. To
this end, it includes a completely decentralized implementation of the token-store dataflow architecture
(section 4) and a distributed execution model. WaveScalar supports the execution of code written in general
purpose, imperative languages (C , C++ or Java). Conceptually, a WaveScalar binary is a dataflow graph
of an executable and resides in memory as a collection of intelligent instruction words. Each instruction
is intelligent, because it has a dedicated functional unit. In practice, since placing a functional unit at
each word of instruction memory is impractical, an intelligent instruction cache, the WaveCache, holds
the current working set of instructions and executes them in place. The WaveScalar compiler breaks the
control flow graph of an application into pieces called waves. Figure 17 shows a loop divided into waves.

The wave-number specifies different instances of specific instructions. Waves are very similar to hyper-
blocks, but they are more general, since they can contain control flow joins and can have more than one
entrance. Consider the waves in figure 17. Assume the code before the loop has wave number 0. When
the code executes, the two CONST instructions will produce 0.0 (wave number 0, value 0). The WAVE-
ADVANCE(WA) instructions will take these as inputs and each will output 1.0, which will propagate
through the body of the loop as before. At the end of the loop, the right-side STEER(S) instruction will
produce 1.1 and pass it back to the WA at the top of its side of the loop which will then produce 2.1. A
similar process takes place on the left side of the graph. The execution ends when the left-side S produces
the value 5.10.

One of the most interesting aspects is the method used by WaveScalar to order memory operations,
to assure memory consistency. Within a basic block, memory operations receive consecutive sequence
numbers. By assigning sequence numbers in this way, the compiler ensures that sequence numbers increase
along any path through the wave. Next, the compiler labels each memory operation with the sequence
numbers of its predecessor and of the successive memory operation, if they can be uniquely determined.
The combination of instruction sequence number and predecessor and successor sequence numbers form a
link, which is denoted: <pred, this, succ>. Figure 18 provides an example of annotated memory operations
in a wave.

The main element in this architecture is the WaveCache (figure 19). The WaveCache is a grid of 2048

28

WA	 WA	

+	 +1	

<5	

S	 S	

const	 #0	 const	 #0	

WA	

WAVES	
sum	 =	 0	
for	 (int	 i	 =0;	 i<5;	 i++)	
	 	 	 	 	 	 	 sum	 +=	 i;	

a)	 b)	

Figure 17: WaveScalar waves[49]

processing elements (PEs) arranged into clusters of 16. Each PE contains logic to control instruction
placement and execution, input and output queues for instruction operands, communication logic, and a
functional unit. Each PE contains buffering and storage for 8 different instructions. The input queues for
each input require only one write and one read port and as few as 2 entries per instruction, or 16 entries
total. Matching logic accesses and updates the bits as new inputs arrive, obviating the need for content
addressable memories. In addition to the instruction operand queues, the WaveCache contains a store
buffer and a traditional L1 data cache for each 4 clusters of PEs. The caches access DRAM through a
conventional, unified, non-intelligent L2 cache.

29

Id#<?,1,?>

Id<1,2,?>

Id<2,4,5>
Id<4,5,7> Nop<2,6,7>

st<?,7,?>

st<1,3,7>

Figure 18: WaveScalar memory operations[48]

Input&Control

Input&Queues

ALU

Output&
Control

Output
Queue Co

nt
ro
l

Processing&Element
Data&caches
and&store&buffers

Cluster

Figure 19: WaveCache[48]

30

5.4 TERAFLUX

Teraflux [19] is a four-year project started in 2010 within the Future and Emerging Technologies Large-Scale
Projects funded by the European Union with the partnership of companies like HP and Microsoft, and
universities in several countries. The dataflow paradigm is used at the thread level. The Teraflux system
is not constrained to only follow the dataflow paradigm. The system distinguishes among legacy and
system-threads (L-,S-threads) and dataflow threads (DF-threads). The execution model of Teraflux [41]
relies on exchanging dataflow threads in a producer-consumer fashion. In order to support the data driven
execution of threads each core includes a hardware module that handles the scheduling of threads, the
Local Thread Scheduling Unit (L-TSU). In addition to the cores, the nodes also contain a hardware module
to coordinate the scheduling of the data driven threads across nodes, the Distributed Thread Scheduling
Unit (D-TSU). The set of all L-TSU and D-TSU composes the Distributed Thread Scheduler (DTS). Nodes
are connected via an inter-node network, using Network on Chip (NoC). The following figures show the
general architecture of the Teraflux system and a scheduling example.

Figure 20: (a)Teraflux basic architecture and (b) Scheduling Example[41]

In figure 20(b) the L-TSU is represented in grey inside each Cij core. The two D-TSUs are represented
in black inside each node. Moreover the x86-x64 ISA is extended. The key points of this extension are:

• enables an asynchronous execution of threads based on dataflow rather than program control-flow;

• the execution of a DF-thread is decided by the D-TSU;

• the types of memory that are used are distinguished in 4 types (1-to-1 communication or Thread Local
Storage, N-to-1 or Frame Memory, 1-to-N or Owner Writable Memory and N-to-N or Transactional
Memory).

The DF-Thread scheduling policy is very similar to the one used in the Scheduled Dataflow architecture
discussed in section 5.7. Since Teraflux is an ongoing project no performance data is available for the
completed system. Performance data is available for DFScala [20], a library for constructing and executing
dataflow graphs in the Scala 1 language. DFScala has been constructed as part of the Teraflux project

1http://www.scala-lang.org/

31

Benchmark performance on a 4 core Intel
Xeon processor with hyper threading

Benchmark performance on dual 6-core
AMD Opteron processors

Figure 21: DFScala performace[20]

and has been tested on Intel and AMD based systems. Figure 5.4 shows the speedup relative to a single
threaded solution.

5.5 MAXELER

Maxeler Technologies is a company specializing in the development of “dataflow computing”, a class of
special-purpose computers that are programmable and can be specialized to different applications at
different points in time.[40] The Maxeler system contains x86 CPUs attached to dataflow engines (DFEs)
via a second-generation PCI Express bus. Data is streamed from memory onto the Maxeler DFEs, where
operations are performed and data is forwarded directly from one function unit (a dataflow core) to another
as the results are needed, without ever being written to the off-chip memory until the chain of processing
is complete. There is no need for instruction-decode logic with this configuration as the flow of data
is predetermined by the functionality programmed into the DFEs. The Maxeler dataflow machine does
not require techniques such as branch prediction as these cores execute pure dataflow, or out-of-order
scheduling as there are no instructions to schedule. As data is always available on chip, general-purpose
caches are not needed. The minimum amount of buffering memory is utilized automatically as necessary.
The Maxeler architecture and use is discussed in detail in a later section of this journal issue.

5.6 Codelet

The Codelet [53] project is based on the exploration of a fine-grain, event-driven model in support of the
operations executed by high-core-count and extreme parallelism machines. This model breaks applications
into codelets (small bits of functionality) and dependencies (control and data) between these objects. It
then uses this decomposition to accomplish advanced scheduling, to accommodate code and data motion
within the system, and to permit flexible exploitation of parallelism in support of goals for performance

32

Interconnect

Node

Node

Node

Node

Chip Chip

Interconnect

DRAM DRAM

Cluster

Cluster

Cluster

Interconnect

Cluster

I/O
DRA
M

CU

Cluster
Memory

CU

Interconnect

SU

I/O

Local;Memory

Register
Window

Register
Window

Register
Window

Register
Window

Local;Memory

Register
Window

Register
Window

Register
Window

Register
Window

Out/of/Cluster4Communica8ons

Node Chip Cluster

CU

SU

Figure 22: Codelet abstract architecture[53]

and power. Figure 22 shows the abstract machine used to explain the execution model.
The abstract machine consists of many nodes that are connected via an interconnection network. Each

node contains a many-core chip. The chip may consists of up to 1-2 thousand processing cores being
organized into groups (clusters) linked together via a chip interconnect. Each group contains a collection
of computing units (CU) and at least one scheduling unit (SU), all brought together by their own chip
interconnect.

The building blocks of an application are Thread Procedures and Codelets. A codelet is a collection of
machine instructions that can be scheduled as a unit of computation. When a codelet has been allocated
and scheduled to a computation unit, it will be kept usefully busy until its completion. Since codelets
are more fine grained than a conventional thread, context switching is more frequent resulting in more
overhead for the application.

A codelet becomes enabled once tokens are present on each of its input arcs. An enabled codelet actor
can be fired if it has acquired all the required resources and is scheduled for execution. A codelet actor
behaves as a dataflow node.

A threaded procedure (TP) is an asynchronous function which acts as codelet graph container. A
TP serves two purposes, first it provides a naming convention to invoke codelet graphs (similar to a
conventional dataflow graph), and second, it acts as a scope for codelets to efficiently operate within.
Figure 23 shows three threaded procedure invocations.

5.7 Scheduled Dataflow

Scheduled Dataflow architecture [30, 31] applies the dataflow execution model at thread level rather than
at instruction level, unlike conventional dataflow architectures. SDF is a multithreaded hybrid control-
flow/dataflow architecture:

• the dataflow model is used to enable the threads for executing;

• the control-flow model in used to schedule instructions within a thread using a program counter.

33

Input

Threaded,Procedure,(TP)

Codelet

Dependency,
inside,a,TP
Dependency,
outside,a,TP

Figure 23: Codelets and Threaded Procedures[53]

SDF decouples memory accesses from execution. The first example of decoupled architecture was
proposed by J. E. Smith [46]. Smith’s architecture required a compiler to explicitly slice the program into
memory access slices and computational slices. The two slices execute on different processing elements and
communicate through buffers. A synchronization mechanism is used to guarantee the correct execution.
In contrast, SDF divides a thread into three phases: the first phase pre-loads the input data from memory
into registers; the second phase computes the thread results; the third phase stores the results into memory.
Memory access operations (first and third phase) are executed on a different pipeline called synchronization
pipeline (SP). The functional operations (second phase) are executed on the main pipeline which is called
execution pipeline (EP). This allows the memory phases of a thread to be overlapped with the execution
phases allowing SDF to reduce the impacts of the memory wall. The creation, firing, and termination
of threads is performed by the scheduling unit (SU). There are multiple SP and EP units which allows
multiple threads to be executing concurrently. The SDF architecture is shown in Figure 24. SDF threads
can be executed speculatively and validated before being committed as shown in the thread level speculation
(TLS) queue and commit blocks. This feature maps nicely to transactional memory systems.

Scheduling+Unit

SPs EPs

Preload+Queue

Post5Store+Queue

TLS+Queue

Commit

Exec+Queue

Figure 24: SDF Thread Architecture

34

WTC

PLC

EXC

PSC

Synchronization
Count met

Preload
Phase

Completed

Execution
Phase

Completed

Thread
Terminated

Poststore
Phase

Completed

SU

SP

EP

Figure 25: SDF Continuation Transitions

Threads in SDF are non-blocking. A thread completes execution without blocking the processor for
synchronization with other threads. Thread context switching is controlled by the compiler, generating
new threads rather than blocking a thread for synchronization. The compiler attempts to map super-
blocks from the program’s dataflow analysis into the SDF threads. This leads to a reduction of the
synchronization overhead due to blocking threads and starvation situations are avoided. This approach
generates more fine-grained threads, which may increase the overhead if not implemented in an efficient
manner. SDF includes a concept of mini-threads that are useful in the execution of loops where the mini-
threads execute concurrently while sharing the parent thread context, including some of the registers, for
efficient loop result reduction. SDF uses ETS-like continuation (described in section 4.4 to maintain useful
information for thread execution. Each thread has an associated continuation in one of the four following
states:

1. Waiting Continuation (WTC): Initial state after thread creation until all inputs have been received.

2. Pre-Load Continuation (PLC): When a thread has received all of its inputs and is ready to be
activated.

3. EXecution Continuation (EXC): All input data has been loaded into the registers and the thread is
waiting for execution.

4. Post-Store Continuation (PSC): The thread has completed its computations and is ready to store
the results in other threads’ frames.

The movement of a thread from creation and waiting for its data to become available in the SU; to
preloading its data in the SP; execution of the data operations in the EP; post-storing the results in the
SP; and thread termination is illustrated in Figure 25.

5.8 Recent Architectures Summary

Table 2 provides a summary of the recent architectures discussed in the paper. The Granularity column
indicates the general level at which dataflow techniques are applied. The Maturity column indicates the

35

maturity level of the research by listing the most complex demonstration of the architecture at the date
of this paper. The Implementation column indicates if the research requires a full custom processor, uses
a custom coprocessor, or can be implemented with existing devices. The Programming column indicates
if special languages are needed for programming the architecture. The Current column indicates the
currency of the research by providing the year of the most recent publication at the time this paper was
written.

Architecture Granularity Maturity Implementation Programming Current
TRIPS Block Prototype Custom General 2006
D2NOW Thread Prototype Existing General 2006
Wavescalar Superblock Simulation Custom General 2010
TERAFLUX Thread Prototype Existing General 2013
MAXELER Task Commercial Coprocessor General 2013
Codelet Thread Abstract machine Existing General 2013
SDF Superblock Simulation Custom General 2013

Table 2: Summary of Recent Architectures

6 Conclusions

In this chapter we have described how dataflow properties can be used to support concurrency, syn-
chronization, and speculation; which are essential for achieving high performance. We have provided an
overview of dataflow based programming languages and historical dataflow architectural implementations.
We have introduced some hybrid control flow/dataflow designs. Scheduled dataflow (SDF) architecture
is used to illustrate how a dataflow architecture can be designed to exploit concurrency and speculative
execution.

The dataflow model of computation is neither based on memory structures that require inherent
state transitions, nor does it depend on history sensitivity. This "purity" permits the use of the model
to represent maximum concurrency to the finest granularity, and facilitates dependency analysis among
computations. Despite the advantages of the dataflow model, there are no commercially successful imple-
mentations of the data-driven model. Critiques of dataflow argue that functional semantics and freedom
from side-effects maybe nice, but well-known compiler techniques applied to imperative languages can
allow equal exploitation of parallelism as dataflow. They claim that the dataflow model is weak in han-
dling recurrences and arrays, and all proposed dataflow solutions to these problems are complicated. The
implementation of fine-grain parallelism leads to performance penalties in detecting and managing the
high-level of parallel activities. The lack of memory (and memory hierarchy) makes the dataflow model
inefficient to implement on register-based processing units.

Hybrid dataflow/control-flow architectures are proposed to address some of the these criticisms. These
attempts also failed in part due to the dominance of imperative programming languages. The implementa-
tion of imperative memory systems within the context of a dataflow model is not satisfactorily addressed.
In addition to the management of structures, techniques for the management of pointers, dealing with

36

aliasing and dynamic memory management are needed. Ordering of memory updates (a critical concept
in shared memory concurrency) is an alien concept to pure dataflow. However, to be commercially viable,
it is essential to provide shared memory based synchronization among concurrent activities. Some ideas
such as those presented in Wavescalar and SDF hold some promise in this area.

Nevertheless, several features of the dataflow paradigm have found their place in modern processor
architectures and compiler technology. Most modern processors utilize complex hardware techniques to
detect data dependencies, control hazards, and dynamic parallelism to bring the execution engine closer
to an idealized dataflow engine. Compilers rely on Static Single Assignment analysis to eliminate anti and
output dependencies among computations. Some multithreaded systems utilize dataflow like triggering to
enable threads.

There appears to be some renewed interest in hybrid systems that use dataflow like synchronization
at thread level but use sequential control flow execution within a thread. Extensions to the pure dataflow
model to permit "producer-consumer" and "barrier" synchronization are being proposed. Speculative
execution and support for transactional memory models is yet another sign of interest in dataflow systems.
But most importantly, there is a growing interest and some evidence of commercial success in using
dataflow as a co-processor to a conventional control flow processing unit. The dataflow based co-processor
is responsible for executing computations rich with concurrency, while the main processor will handle
scheduling and memory management. A dataflow based co-processor offers the potential for a simplified
alternative to conventional GPUs. We are optimistic that such systems will play an increasing role in the
next generation of high performance computer systems.

37

References

[1] William B. Ackerman and Jack B. Dennis. Val – a value-oriented algorithmic language. Technical
report, Massachusetts Institute of Technology, Feb 1979.

[2] D. A. Adams. A computation model with dataflow sequencing. Technical report, Stanford University,
Dec 1968.

[3] J.M. Arul and K.M. Kavi. Scalability of scheduled data flow architecture (sdf) with register con-
texts. In Algorithms and Architectures for Parallel Processing, 2002. Proceedings. Fifth International
Conference on, pages 214–221, 2002.

[4] Arvind, Kim P. Gostelow, and Wil Plouffe. An asynchronous programming language and computing
machine. Technical report, University of California, Irvine, Dec 1978.

[5] Arvind, Rishiyur S. Nikhil, and Keshav K. Pingali. I-structures: Data structures for parallel comput-
ing. ACM Trans. Program. Lang. Syst., 11(4):598–632, October 1989.

[6] K. Arvind and Rishiyur S. Nikhil. Executing a program on the mit tagged-token dataflow architecture.
IEEE Trans. Comput., 39(3):300–318, March 1990.

[7] J. Backus. Can programs be liberated from von neumann style? a functional style and its algebra of
programs. Communications of the ACM, pages 613–641, Aug 1978.

[8] A. Benveniste and G. Berry. The synchronous approach to reactive and realtime systems. Proceedings
of the IEEE, 79(9):535–546, Sep 1991.

[9] Jurij Silc Borut Robic and Theo Ungerer. Beyond dataflow. Journal of Computing and Information
Technology, 2:89–101, 2000.

[10] J. Buck, S. Ha, E. Lee, and D. Messerschmitt. Ptolemy: A framework for simulating and prototyping
heterogeneous systems. International Journal of Computer Simulation, Apr 1994.

[11] Doug Burger, Stephen W. Keckler, Kathryn S. McKinley, Mike Dahlin, Lizy K. John, Calvin Lin,
Charles R. Moore, James Burrill, Robert G. McDonald, William Yoder, and the TRIPS Team. Scaling
to the end of silicon with edge architectures. Computer, 37(7):44–55, Jul 2004.

[12] D. Cann, J. Feo, W. Bohm, and R. Oldehoeft. The sisal 2.0 reference manual. Technical report,
Computing Research Group, LLNL and Computer Science Department, Colorado State University,
Dec 1991.

[13] Ron Cytron, Jeanne Ferrante, Barry K. Rosen, Mark N. Wegman, and F. Kenneth Zadeck. Efficiently
computing static single assignment form and the control dependence graph. ACM Transactions on
Programming Languages and Systems, 13:451–490, 1991.

[14] J. B. Dennis. First version of dataflow procedural language. Lecture Notes in Computer Science, 19,
1974.

38

[15] Jack B. Dennis and David P. Misunas. A preliminary architecture for a basic data-flow processor.
SIGARCH Comput. Archit. News, 3(4):126–132, December 1974.

[16] A. K. Deshpande and K. M. Kavi. A review of specification and verification methods for parallel
programs, including the dataflow approach. IEEE Proceedings, 77(12):1816–1828, Dec 1989.

[17] Raphael Finkel. Advanced Programming Languages. Addison-Wesley Professional, 1996.

[18] Mark Gebhart, Bertrand A. Maher, Katherine E. Coons, Jeff Diamond, Paul Gratz, Mario Marino,
Nitya Ranganathan, Behnam Robatmili, Aaron Smith, James Burrill, Stephen W. Keckler, Doug
Burger, and Kathryn S. McKinley. An evaluation of the TRIPS computer system. SIGPLAN Not.,
44(3):1–12, March 2009.

[19] Roberto Giorgi. Teraflux: exploiting dataflow parallelism in teradevices. In Proceedings of the 9th
conference on Computing Frontiers, CF ’12, pages 303–304, New York, NY, USA, 2012. ACM.

[20] D. Goodman, S. Khan, C. Seaton, Y. Guskov, B. Khan, M. Luján, and I. Watson. Dfscala: High
level dataflow support for scala. In Second International Workshop on Data-Flow Models For Extreme
Scale Computing (DFM), 2012.

[21] N. Halbwachs, P. Caspi, P. Raymond, and D. Pilaud. The synchronous dataflow programming lan-
guage lustre. Proceedings of the IEEE, 79(9):1305–1319, Sep 1991.

[22] John L. Hennessy and David A. Patterson. Computer Architecture, Fifth Edition: A Quantitative
Approach. Morgan Kaufmann Publishers Inc., San Francisco, CA, USA, 5th edition, 2011.

[23] Ali R. Hurson and Krishna M. Kavi. Dataflow computers: Their history and future. In Wiley
Encyclopedia of Computer Science and Engineering. IEEE Computer Society, 2008.

[24] Wesley M. Johnston, J. R. Paul Hanna, and Richard J. Millar. Advances in dataflow programming
languages. ACM Comput. Surv., 36(1):1–34, March 2004.

[25] G Kahn. The semantics of a simple language for parallel programming. Proceedings of IFIP Congress
Information Processing Conference, pages 471–475, 1974.

[26] K. M. Kavi, A. R. Hurson, Patadia P., E. Abraham, and P. Shanmugam. Design of cache memories for
multi-threaded dataflow architecture. In Proceedings of the 22nd Intl. Symp. on Computer Architecture
(ISCA-22), ISCA-22, pages 253–264, New York, NY, USA, June 1995. ACM.

[27] K.M. Kavi, B.P. Buckles, and U. N. Bhat. A formal definition of dataflow graph models. IEEE Tr.
on Comp, pages 940–948, Nov 1986.

[28] K.M. Kavi, B.P. Buckles, and U. N. Bhat. Isomorphisms between petri nets and dataflow graphs.
IEEE Tr. on Software Engineering, pages 1127–1134, Oct 1987.

[29] K.M. Kavi and A. K. Deshpande. Specification of concurrent processes using a dataflow model of
computation and partially ordered events. Journal of Systems and Software, 16(2):107–120, Oct 1991.

39

[30] Krishna Kavi, Joseph Arul, and Roberto Giorgi. Execution and cache performance of the sched-
uled dataflow architecture. Journal of Universal Computer Science, Special Issue on Multithreaded
Processors and Chip Multiprocessors, 6:948–967, 2000.

[31] Krishna M. Kavi, Roberto Giorgi, and Joseph Arul. Scheduled dataflow: Execution paradigm, archi-
tecture, and performance evaluation. IEEE Trans. Comput., 50(8):834–846, August 2001.

[32] Ali Hurson Krishna M. Kavi, Wentong Li. A non-blocking multithreaded architecture with support
for speculative threads. Algorithms and Architectures for Parallel Processing, 5022:173–184, 2008.

[33] Costas Kyriacou, Paraskevas Evripidou, and Pedro Trancoso. Data-driven multithreading using con-
ventional microprocessors. IEEE Trans. Parallel Distrib. Syst., 17(10):1176–1188, October 2006.

[34] P. Le Guernic, T. Gauthier, M. Le Borgne, and C. Le Maire. Programming realtime applications
with signal. Proceeding of the IEEE, 79(9), Sep 1991.

[35] B. Lee, A.R. Hurson, and B. Shirazi. A hybrid scheme for processing data structures in a dataflow
environment. Parallel and Distributed Systems, IEEE Transactions on, 3(1):83–96, 1992.

[36] Ben Lee and A. R. Hurson. Dataflow architectures and multithreading. Computer, 27(8):27–39,
August 1994.

[37] E. A. Lee and T. M. Parks. Dataflow process networks. Proceeding of the IEEE, 83(5):773–799, May
1995.

[38] Wentong Li, Krishna Kavi, Afrin Naz, and Phil Sweany. Speculative thread execution in a multi-
threaded dataflow architecture. In Proceedings of the 19th ISCA Parallel and Distributed Computing
Systems, 2006.

[39] M. Mehrara, T. Jablin, D. Upton, D. August, K. Hazelwood, and S. Mahlke. Multicore compilation
strategies and challenges. Signal Processing Magazine, IEEE, 26(6):55–63, 2009.

[40] O. Pell and V. Averbukh. Maximum performance computing with dataflow engines. Computing in
Science Engineering, 14(4):98–103, 2012.

[41] Antoni Portero, Zhibin Yu, and Roberto Giorgi. Teraflux: Exploiting tera-device computing chal-
lenges. Procedia CS, 7:146–147, 2011.

[42] Easwaran Raman, Guilherme Ottoni, Arun Raman, Matthew J. Bridges, and David I. August.
Parallel-stage decoupled software pipelining. In Proceedings of the 6th annual IEEE/ACM inter-
national symposium on Code generation and optimization, CGO ’08, pages 114–123, New York, NY,
USA, 2008. ACM.

[43] Ram Rangan, Neil Vachharajani, Guilherme Ottoni, and David I. August. Performance scalability of
decoupled software pipelining. ACM Trans. Archit. Code Optim., 5(2):8:1–8:25, September 2008.

[44] Ram Rangan, Neil Vachharajani, Manish Vachharajani, and David I. August. Decoupled software
pipelining with the synchronization array. In Proceedings of the 13th International Conference on
Parallel Architectures and Compilation Techniques, PACT ’04, pages 177–188, Washington, DC, USA,
2004. IEEE Computer Society.

40

[45] Charles F. Shelor. Advances in computer architecture, principles of compiler optimization:
Minithreads and dswp extensions to sdf. Technical report, University of North Texas, Computer
Science and Engineering, Dec 2012.

[46] James E. Smith. Decoupled access/execute computer architectures. SIGARCH Comput. Archit. News,
10(3):112–119, April 1982.

[47] J. Greggory Steffan, Christopher B. Colohan, Antonia Zhai, and Todd C. Mowry. A scalable approach
to thread-level speculation. SIGARCH Comput. Archit. News, 28(2):1–12, May 2000.

[48] Steven Swanson, Ken Michelson, Andrew Schwerin, and Mark Oskin. Wavescalar. In Proceedings of
the 36th annual IEEE/ACM International Symposium on Microarchitecture, MICRO 36, pages 291–,
Washington, DC, USA, 2003. IEEE Computer Society.

[49] Steven Swanson, Andrew Schwerin, Martha Mercaldi, Andrew Petersen, Andrew Putnam, Ken
Michelson, Mark Oskin, and Susan J. Eggers. The wavescalar architecture. ACM Trans. Comput.
Syst., 25(2):4:1–4:54, May 2007.

[50] M. Takesue. Cache memories for data flow architectures. IEEE Transactions on Computers, 41:667–
687, Jun 1992.

[51] S. A. Thoreson and A. N. Long. A feasibility study of a memory hierarchy in data flow environment.
In Proc. Intl. Conference on Parallel Computing, pages 356–360, Jun 1987.

[52] M. Tokoro, J. R. Jagannathan, and H. Sunahara. On the working set concept for data-flow machines.
In Proc. 10th Annul. Intl. Symp. on Computer Architecture, pages 90–97, Jul 1983.

[53] Stéphane Zuckerman, Joshua Suetterlein, Rob Knauerhase, and Guang R. Gao. Using a "codelet"
program execution model for exascale machines: position paper. In Proceedings of the 1st International
Workshop on Adaptive Self-Tuning Computing Systems for the Exaflop Era, EXADAPT ’11, pages
64–69, New York, NY, USA, 2011. ACM.

41

