
Scheduled Dataflow: Execution Paradigm,
Architecture, and Performance Evaluation

Krishna M. Kavi, Senior Member, IEEE, Roberto Giorgi, Member, IEEE, and

Joseph Arul, Student Member, IEEE

AbstractÐIn this paper, the Scheduled Dataflow (SDF) architectureÐa decoupled memory/execution, multithreaded architecture

using nonblocking threadsÐis presented in detail and evaluated against Superscalar architecture. Recent focus in the field of new

processor architectures is mainly on VLIW (e.g., IA-64), superscalar, and superspeculative designs. This trend allows for better

performance, but at the expense of increased hardware complexity and, possibly, higher power expenditures resulting from dynamic

instruction scheduling. Our research deviates from this trend by exploring a simpler, yet powerful execution paradigm that is based on

dataflow and multithreading. A program is partitioned into nonblocking execution threads. In addition, all memory accesses are

decoupled from the thread's execution. Data is preloaded into the thread's context (registers) and all results are poststored after the

completion of the thread's execution. While multithreading and decoupling are possible with control-flow architectures, SDF makes it

easier to coordinate the memory accesses and execution of a thread, as well as eliminate unnecessary dependencies among

instructions. We have compared the execution cycles required for programs on SDF with the execution cycles required by programs on

SimpleScalar (a superscalar simulator) by considering the essential aspects of these architectures in order to have a fair comparison.

The results show that SDF architecture can outperform the superscalar. SDF performance scales better with the number of functional

units and allows for a good exploitation of Thread Level Parallelism (TLP) and available chip area.

Index TermsÐMultithreaded architectures, dataflow architectures, superscalar, decoupled architectures, Thread Level Parallelism.

æ

1 INTRODUCTION

THE performance gap between processors and memory
has widened in recent years and the trend appears to

continue in the foreseeable future. In this paper, we present
an architecture that can overcome this problem, with better
scalability than superscalar processors with increased
number of pipelines. Our architecture is based on multi-
threading and dataflow concepts.

Multithreading has been touted as a solution to minimize
the loss of CPU cycles by executing several instruction
streams simultaneously. While there are several different
approaches to multithreading, there is a consensus that
multithreading, in general, achieves higher instruction issue
rates on processors that contain multiple functional units
(e.g., Superscalar and VLIW) or multiple processing
elements (i.e., Chip Multiprocessors) [11], [23], [24], [40],
[42], [44]. Nevertheless, research is open to find an
appropriate multithreaded model and implementation to
achieve the best possible performance. Recent efforts like
the MP98 [15] show that attention to data-dependencies and
hardware support for forking multiple threads help in-
crease the performance.

We have found that the use of nonblocking dataflow-
based threads are appropriate for improving the perfor-
mance of superscalar architectures. Dataflow ideas are often

utilized in modern processor architectures. However, these
architectures rely on conventional programming paradigms
and perform runtime transformations of the control-flow
programs into dataflow programs, requiring complex
hardware to detect data and control hazards, and reorder
and issue multiple instructions.

Our architecture differs from other multithreaded
architectures in two ways: 1) Our programming paradigm
is based on dataflow, which eliminates the need for runtime
instruction scheduling, thus reducing the hardware com-
plexity significantly and 2) complete decoupling of all
memory accesses from execution pipeline. The underlying
dataflow and nonblocking models permit for clean separa-
tion of memory accesses from execution (which is very
difficult to coordinate in other programming models). Data
is preloaded into an enabled thread's register context prior
to its scheduling on the execution pipeline. After a thread
completes execution, the results are poststored from its
registers into memory. The instruction set implements
dataflow computational model, while the execution engine
relies on control-flow-like sequencing of instructions
(hence the name Scheduled Dataflow). Unlike Superscalar,
our architecture performs no (dynamic) Out-of-Order
execution and thus eliminates the need for complex
instruction issue and retiring hardware. These hardware
savings could be utilized to include either more processing
units on a chip or more register sets to increase the degree
of multithreading (i.e., Thread Level Parallelism). More-
over, it was stated that a significant power is expended by
instruction issue logic and the power consumption
increases quadratically with the size of the instruction
issue width [27], [43]. Some researchers are exploring

834 IEEE TRANSACTIONS ON COMPUTERS, VOL. 50, NO. 8, AUGUST 2001

. K.M. Kavi and J. Arul are with the Department of Electrical and Computer
Engineering, University of Alabama at Huntsville, Huntsville, AL 35899.
E-mail: kavi@ece.uah.edu, arul@crash1.eb.uah.edu.

. R. Giorgi is with the Departimento di Ing. Informazione, UniversitaÁ di
Siena, 56 Via Roma, 53100 Siena, Italy. E-mail: giorgi@acm.org.

Manuscript received 1 Sept. 2000; accepted 8 Feb. 2001.
For information on obtaining reprints of this article, please send e-mail to:
tc@computer.org, and reference IEEECS Log Number 113587.

0018-9340/01/$10.00 ß 2001 IEEE

mechanisms to construct dependence graphs at runtime to
guide which instructions should be examined for readiness
(rather than all instruction in the issue window) [27]. In our
architecture, we perform no dynamic instruction scheduling
(or select one or more instructions for issue from a large set of
instructions). Thus, our approach could naturally obviate the
need for runtime construction of dependence graphs.

We have translated several programs into our SDF
instruction set. Using a cycle-level simulator developed at
the University of Alabama in Huntsville (UAH), we have
compared the execution performance of our architecture
with that of conventional superscalar architecture with
multiple functional units and aggressive Out-of-Order
instruction issue logic as facilitated by the SimpleScalar
tool set [10].

In Section 2, we will present research that is most closely
related to ours. In Section 3, we will present our Scheduled
Dataflow architecture in detail. Section 4 will discuss the
methodology that we used in our evaluation and Section 5
will show our numerical results for real programs.

2 RELATED RESEARCH AND BACKGROUND

2.1 Decoupling Memory Accesses From Execution
Pipeline

Decoupling memory accesses from the execution pipeline to
overcome the ever-increasing processor-memory commu-
nication cost was first introduced in [34]. Since then larger
cache memories have been used to alleviate the memory
latency problem. But, the gap between processor speed and
average memory access time is still a major limitation in
achieving high performance. Increasing cache capacities,
while consuming an increasingly large silicon area on
processor chips, often results in diminishing returns.
Decoupled architectures may again present a solution to
leaping over the ªmemory wall.º Decoupled ideas were
recently used in a multithreaded architecture known as
Rhamma [17]. Rhamma uses conventional control-flow
programming paradigm and blocking threads, hence
requiring many more thread context switches than our
nonblocking dataflow threads. Moreover, SDF groups all
Load instructions together into ªpreloadº and all Store
instructions together into ªpoststore.º An analytical com-
parison with the Rhamma architecture was presented in
[21] and, on that basis, we found that SDF outperforms
Rhamma.

2.2 Dataflow Model and Architectures

The dataflow model and architecture have been studied for
more than two decades and held the promise of an elegant
execution paradigm with the ability to exploit inherent
parallelism available in applications [4], [5], [12], [14], [28],
[29], [30]. However, actual implementations of the model
have failed to deliver the promised performance. Never-
theless, several features of the dataflow computational
model have found their place in modern processor
architectures and compiler technology (e.g., Static Single
Assignment (SSA) [13], register renaming, dynamic sche-
duling and Out-of-Order instruction execution [18],
I-structure-like synchronization [1], [6], nonblocking
threads [8]). Most modern processors utilize complex

hardware techniques to detect data and control hazards,
and dynamic parallelismÐto bring the execution engine
closer to an idealized dataflow engine. It is our contention
that such complexities can be eliminated if a more
suitable and direct implementation of the dataflow model
can be discovered. Some of the limitations of the pure
dataflow model that prevented its practical implementa-
tions include the following: 1) too fine-grained (instruc-
tion level) multithreading, 2) difficulty in exploiting
memory hierarchies and registers, and 3) asynchronous
triggering of instructions.

Many researchers have addressed the first two limita-
tions of dataflow architectures [12], [20], [30], [35], [37], [38],
[39]. Our current architecture specifically addresses the
third limitation. Some researchers have proposed hybrid
designs in which the dataflow scheduling is applied only at
thread level (i.e., macro-dataflow), while each thread is
comprised of conventional control-flow instructions [16],
[19], [31]. In such systems, the instructions within a thread
do not retain functional properties and hence, introduce
Write-After-Write (WAW) and Write-After-Read (WAR)
dependencies. This in turn requires complex hardware to
perform dynamic instruction scheduling. In our system, the
instructions within a thread still retain functional properties
of dataflow model and thus eliminate the need for complex
hardware. The results (or data) flow from instruction to
instruction; the data destined to an instruction is stored in
registers exclusively assigned for the instruction. Our
deviation, in the Scheduled Dataflow (SDF) system, from
pure dataflow is a deviation from data driven asynchro-
nous1 execution (or token driven execution) that is
traditionally used for the implementation of ªpureº data-
flow processors.

3 THE SCHEDULED DATAFLOW PROCESSOR

We will first show how it is possible to ªscheduleº dataflow
instructions. Let us consider a simple dataflow graph,
shown in Fig. 1, and the corresponding SDF code. Each
node of the graph will be translated into an SDF instruction.
The two source operands (i.e., input data) destined for a
dyadic SDF instruction are stored in a pair of registers
specifically assigned to that instruction; a pair consists of
even-odd registers; for example, RR2 refers to registers R2
and R3 within a specified thread context. Predecessor
instructions store the data in either the left or right half of a
register pair, as dictated by the data dependencies of the
program. Unlike in conventional dataflow architecture-
sÐe.g., Monsoon [29], Tagged-Token Dataflow Architecture
(TTDA) [7]Ðin our architecture, an instruction is not
scheduled for execution immediately when the operands
are matched (i.e., available). Instead, operands are saved in
the register-pair associated with the instruction and the
enabled instruction is scheduled for execution based on

KAVI ET AL.: SCHEDULED DATAFLOW: EXECUTION PARADIGM, ARCHITECTURE, AND PERFORMANCE EVALUATION 835

1. It is often believed that dataflow means parallel execution. The
dataflow model of computation only exposes the inherent parallelism and
the parallelism can only be exploited if multiple functional units or
processing elements are available. In the presence of a single processing
element (or functional unit), dataflow instructions still execute sequentially,
albeit asynchronously.

compile time ordering of the dataflow graph, eliminating
the asynchronous execution implied by dataflow.

Assuming that the inputs A, B, X, and Y to the dataflow
graph of Fig. 1 are available in R2, R3, R4, and R5,
respectively (this is achieved during preload, as explained
below), the five instructions shown in Fig. 2 will be scheduled
for execution sequentially and perform the necessary compu-
tations, as indicated by the graph in Fig. 1. Note that a pair
of registers is specified as source operands with each
instruction. For example, ADD RR2, R11, R13 adds the
contents of registers R2 and R3 and stores the result in R11
and R13. Our instructions still retain the functional nature
of dataflowÐeach instruction stores its results in the
registers that are specifically associated with destination
instructions. There are no Write-After-Read (WAR or
conceptually equivalent anti) and Write-After-Write
(WAW or equivalent output) dependencies with our
instructions.

The code shown in Fig. 2 is for the Execution Pipeline
(EP). Since our architecture is a decoupled multithreaded
system, we use two separate units: Synchronization Pipe-
line (SP) and Execution Pipeline (EP). SP prepares enabled
threads for execution on EP by preloading threads' context
(i.e., registers) with data from the threads' Frame Memories
(Frame Memory is a portion of memory allocated to a
thread) and poststoring results from completed threads'
registers in frame memories of destination threads.

To illustrate the preload concept, consider Fig. 1 and the
SDF code shown in Fig. 2. Assume that the code block of
Fig. 2 (viewed as a thread) receives the four inputs (A, B, X,
Y) from other threads. Inputs to a thread are saved in the
frame memory allocated for the thread when the thread is
created and a thread is enabled for execution only when it
receives all inputs (as specified by its synchronization
count). When enabled, a register context is allocated to the
thread and the input data for the thread is ªpreloadedº
from its frame memory into its registers.

Assuming that the inputs for the thread (A, B, X, and Y) are
stored in its frame (pointed by RFP) at offsets 2, 3, 4, and 5, the

first four LOAD instructions of Fig. 3 (executed by SP)
preload the thread's data into registers R2, R3, R4, R5 of the
register context allocated for the thread. After the preload, the
thread is scheduled for execution on EP. The EP then uses
only its registers during the execution of the thread body
(Fig. 2). Consider that the results generated by MULT and
DIV in our code example (i.e., R14 and R15) are needed by two
other threads. The frame pointers and frame-offsets for the
destination threads are made available to the current thread
in register couples R6|R7 and R8|R9, as shown in the preload
code above (the last four LOAD instructions of Fig. 3).

The instructions shown in Fig. 4 transfer (or poststore)
the results of the current thread (i.e., from MULT in R14 and
DIV in R15) to frames pointed to by R6 and R8 at frame-
offsets contained in R7 and R9. SP executes STORE
instructions after a thread completes its execution at EP.
As can be observed from this example, when a thread is
created, it is necessary to provide the thread with the
destination thread's frame pointers and offsets.

3.1 Continuations

To better understand the implementation of the SDF
architecture, we need to focus first on the dynamic scenario
that can be generated at run time. We need to introduce the
concept of continuation: a continuation in our architecture
is simply a four-value tuple, designated as <FP, IP, RS,
SC>, where FP is the Frame Pointer (where thread input
values are stored), IP is the Instruction Pointer (which
points to the thread code), RS is a Register Set (a
dynamically allocated register set), and SC is a Synchroni-
zation Count (the number of values needed to enable that
thread). Each thread has an associated continuation. At a
given time a thread continuation can be one of the
following, where ª- -ª means that the value is either
undefined or unnecessary:

. Waiting Continuation (WTC) or <FP, IP, - -, SC>

. Preload Continuation (PLC) or <FP, IP, RS, - ->

. Enabled Continuation (EXC) or <- -, IP, RS, - ->

. Poststore Continuation (PSC) or <- -, IP, RS, - ->

Thus, at a given time, a thread can be in one of four
possible states: WTC, PLC, EXC, or PSC (Fig. 5) based on its
continuation. After being created (in status WTC), a
thread's continuation moves from ªpreloadº (or PLC) status
at SP to ªexecuteº (or EXC) status at EP and finishes in
ªpoststoreº (PSC) status again at SP.

A Scheduler Unit (SU) handles the management of
continuations and processing resources. In our design, the
SU is very simple and can be implemented in hardware
using a PLA. We now describe the details of the main
functional units in our architecture: the EP, the SP, and
the SU.

836 IEEE TRANSACTIONS ON COMPUTERS, VOL. 50, NO. 8, AUGUST 2001

Fig. 1. A simple dataflow graph.

Fig. 2. Code corresponding to the previous dataflow graph.

3.2 Execution Pipeline (EP)

Fig. 6 shows the block diagram of the Execution Pipeline
(EP). Remember that EP executes computations of a thread
using only registers. The instruction fetch unit behaves like
a traditional fetch unit, relying on a program counter to
fetch the next instruction.2 We rely on compile time analysis
to produce the code for EP so that instructions can be
executed in sequence and assure that the instruction data
already available in its pair of source registers.

The instruction fetch unit fetches an instruction belonging
to the current thread using PC. The decode (and register
fetch) unit decodes the instruction and obtains a pair of
registers that contains (up to two) source operands for the
instruction. The execute unit executes the instruction and
sends the results to the write-back unit along with the
destination register numbers. The write-back unit writes (up
to) two values to the register file. As can be seen, the
Execution Pipeline (EP) behaves more like a conventional
pipeline while retaining the primary dataflow properties:
Data flows from instruction to instruction. Moreover, the EP
does not access data cache memory and, hence, requires no
pipeline stalls (or context switches) due to cache misses.

3.3 Synchronization Pipeline

Fig. 7 shows the organization of the Synchronization
Pipeline (SP), which mainly deals with memory accesses.
Here, we deal with preload and poststore instructions. The
pipeline consists of the following stages: the instruction fetch
unit fetches an instruction belonging to the current thread
using PC. The decode unit decodes the instruction and
fetches register operands (using a Register Set). The effective
address unit computes the effective address for LOAD and
STORE instructions. LOAD and STORE instructions only
reference the Frame memories3 of threads, using a frame-
pointer (FP) and an offset into the frame, both of which are
contained in registers. The memory access unit completes
LOAD and STORE instructions. Pursuant to a poststore, the
synchronization count of a thread is decremented. The
write-back unit completes LOAD (preload).

3.4 Scheduling Unit (SU)

In our architecture, a thread is created using a FALLOC
instruction. FALLOC allocates a frame (accessible by a
Frame Pointer FP) and initializes the frame by storing an

Instruction pointer (IP) for the thread and a Synchroniza-

tion Count (SC), which indicates the number of inputs

needed to enable the thread. The FALLOC thus creates a

WTC (<FP, IP, - -, SC>).
In order to speed up frame allocation, fixed sized frames

for threads are preallocated and a stack of indices pointing

to the available frames is maintained. The Scheduling Unit

actually carries out this operation by popping an index from

that stack. The SP pushes deallocated frames when

executing FFREE instruction subsequent to poststores of

completed threads. This policy permits fast context switch-

ing and creation of threads.
When some thread completes its execution and ªpost-

storesº results (performed by SP), the synchronization

counts of each awaiting (WTC) thread are decremented.

The SU takes care of checking when the synchronization

count becomes zero. Then, it allocates a Register Set (RS) to

that thread. The register sets are viewed as circular buffers

for assigning (and deallocating) register contexts to enabled

threads.
The thread's continuation becomes a PLC (<FP, IP, RS,

- ->) and it is scheduled for execution on SP for preload.

Then, SP loads the thread's data from its frame memory

into the register context allocated. Upon the completion of

preload, the thread continuation (in state EXC) is handed

off to the Execution Processor (EP), using a FORKEP

instruction. After the execution stage, we use FORKSP to

move this thread back to SP.
FALLOC and FFREE take two cycles in our architecture.

FORKEP and FORKSP take four cycles to complete. These

numbers are based on the observations made in Sparcle [2]

that a 4-cycle context switch can be implemented in

hardware. Note the scheduling is at thread level in our

system, rather than at instruction level as done in other

multithreaded systems (e.g., Tera [3], SMT [41]), and, thus,

requires simpler hardware.
The Scheduler Unit is also responsible for scheduling

preload (PLC) and poststore (PSC) on multiple SPs and

preloaded threads on multiple EPs in superscalar imple-

mentations of our architecture (Section 5.2).

KAVI ET AL.: SCHEDULED DATAFLOW: EXECUTION PARADIGM, ARCHITECTURE, AND PERFORMANCE EVALUATION 837

Fig. 3. A sample preload code. This one corresponds to the previous example.

Fig. 4. A sample poststore code. This one corresponds to the previous

example.

2. Since both EP and SP need to execute instructions, our instruction
cache is assumed to be dual ported. Since instruction memory causes no
coherency related problems, it may be possible to utilize separate cache
memories for EP and SP. This is not unlike most Superscalar systems.

3. Following the traditional dataflow paradigm, we use I-Structure
memory for arrays and other structures.

4 METHODOLOGY

We have evaluated our architecture based on execution of
generated code for actual programs using our instruction
level simulator.4 The simulator used for this paper assumes
a perfect cache (i.e., all memory accesses take one cycle). We
have also developed a backend to Sisal [9] and used MIDC
as intermediate language [32], [33] to generate code for our
architecture, but still without implementing any particular
optimization.

Previously, we have reported comparisons of SDF with
MIPS-like architectures in [22]. In this paper, we will
compare our SDF with a superscalar architecture with
multiple functional units and Out-of-Order instruction
issue logic as facilitated by the SimpleScalar tool set [10].
Also, we will investigate the effect of parallelism (i.e.,
number of enabled threads) and thread granularity (aver-
age run-lengths of the execution threads on EP) on the
performance of our architecture (Sections 5.3, 5.4). We will
investigate the performance gained by increasing the
number of SPs and EPs (that is, Superscalar-SDF) and
compare the performance with that of conventional super-
scalar processors containing multiple functional units
(Section 5.2. The programs used for this study include a

Matrix Multiply, FFT, Fibonacci, Zoom. We chose these
applications since they exhibit different characteristics.
Matrix multiply can be written to exploit both thread level
and instruction level parallelism; FFT exhibits higher
degrees of thread level parallelism with increasing data
sizes; recursive Fibonacci exhibits very little parallelism
(either instruction level or thread level); Zoom (a code
segment of picture zooming application [36]) consists of
three nested loops and a substantial amount of instruction
level parallelism in the middle loop (but only small degrees
of thread level parallelism).

5 EVALUATION OF THE DECOUPLED SCHEDULED

DATAFLOW ARCHITECTURE

In the first experiment, we have compared the execution
performance of SDF (with one SP and one EP), with a
superscalar processor with one Integer ALU (one integer
adder and an integer multiply/divide unit) and one
Floating Point ALU (one floating-point adder and a floating
point multiply/divide unit). This way SDF and the superscalar

have the same number of functional units.5 For the superscalar,

838 IEEE TRANSACTIONS ON COMPUTERS, VOL. 50, NO. 8, AUGUST 2001

Fig. 5. Thread continuation transitions handled by the Scheduling Unit (SU).

Fig. 6. General organization of Execution Pipeline (EP).

4. We will provide the simulator and our benchmark programs to any
interested reader so that our experimental data can be verified.

5. Actually, the superscalar system contains four functional units, one
integer adder, one integer multiply/divide, one floating point adder, one
floating point multiply/divide. SDF has only two arithmetic units, one in SP
and one in EP. There are no separate multiply/divide units.

we will show data for both In-Order and Out-of-Order
instruction issue. In all systems, we have set all instructions
to take one cycle and assume perfect cache (all memory
accesses are set to one cycle). For superscalar (Table 1), we
have set the Instruction Fetch and Decode Width and
Instruction Issue Width to 8, Register Update Unit (RUU)
and Load/Store Queue (LSQ) to 32. The last two columns of
Tables 2, 3, 4, and 5 compare SDF with In-Order and Out-of-
Order superscalar systems. We indicated in boldface the cases
when SDF cycles result lower than both the In-Order and Out-of
Order superscalar cases.

For the Matrix Multiply program (Table 2), we have
forked 10 threads to execute concurrently on the SDF. The
Out-of-Order Superscalar system consistently outperforms
SDF, although SDF performs better than the In-Order
superscalar.

We are not surprised by this result since the
SimpleScalar tool set performs extensive optimizations
and dynamic instruction scheduling. SDF does not per-
form any dynamic instruction scheduling, eliminating
complex hardware (e.g., Scoreboards or reservation
stations [18]). Moreover, SimpleScalar utilizes branch
prediction (the data shown uses Bimodal prediction with
2,048 entries). At present, SDF uses no branch prediction.
Matrix Multiply program exhibits a large degree of
instruction level parallelism and a good branch prediction

is easy to achieve. Although the Matrix multiply program
can be written to exhibit greater thread level parallelism,
we have used a fixed number of threads (10) in this
experiment. Later, we will show how the thread level
parallelism can improve SDF performance (Section 5.3).

While executing FFT (Table 3), unlike for Matrix Multi-
ply, SDF outperforms Out-of-Order superscalar only for
larger input sizes (shown in bold). This is because of the
available instruction-level and thread-level parallelism. For
very small data sizes, Out-of-Order Superscalar system
performs better than all other systems by exploiting
instruction level parallelism. Very little thread level
parallelism is available for such data sizes. However, for
data sizes of 256 or larger, the available thread level
parallelism in SDF (and the overlapped execution of SP and
EP) exceeds the available instruction level parallelism,
leading to a better performance by SDF. This data is in line
with the studies performed on Simultaneous Multithread-
ing systems [26], [25], which indicates that high perfor-
mance is achieved by using a combination of thread level
and instruction level parallelism. Fig. 8 shows this more
clearlyÐfor larger data sizes, SDF performs better than
superscalar architectures.

The Recursive Fibonacci program (Table 4) exhibits very
little parallelism (neither instruction level nor thread level).
For very small data sizes, conventional superscalar systems

KAVI ET AL.: SCHEDULED DATAFLOW: EXECUTION PARADIGM, ARCHITECTURE, AND PERFORMANCE EVALUATION 839

Fig. 7. The Synchronization Pipeline (SP).

TABLE 1
Superscalar Parameters for Tables 2, 3, 4, and 5

appear to incur overheads in creating recursive function

calls, while SDF creates very few threads and incurs smaller

overhead. As the data size increases, SDF creates too many

threads, yet there is very little thread level parallelism,

leading to poor performance by SDF as compared to

superscalar systems. This is again in line with the general

observation that multithreaded architectures perform

poorly for applications with little or no thread level

parallelism (and for single threaded applications).
The Zoom program (Table 5) contains substantial

amounts of sequential code in the middle loop. This code

allows for the exploitation of instruction level parallelism.

However, it limits the amount of thread level parallelism.

Moreover, in SDF, newly created threads wait for preload

(and poststore) operations, causing the SP to be overloaded.

As we will see later, SDF's performance improves when
multiple SPs are used (see Tables 7, 8, 9, 10).

5.1 Summarizing

The data thus far confirms that any multithreaded
architecture requires greater thread level parallelism to
achieve good performance; superscalar architectures re-
quire greater instruction level parallelism. We feel that our
nonblocking model is better suited for decoupling memory
accesses from execution unit. The functional nature of our
instructions eliminates the need for dynamic scheduling of
instructions within a thread. Since our architecture uses two
different types of pipelines (SP and EP), it is necessary to
achieve a good balance of utilization between these two
units. Our architecture incurs unavoidable overheads for
creating threads (allocation of frames, allocation of register

840 IEEE TRANSACTIONS ON COMPUTERS, VOL. 50, NO. 8, AUGUST 2001

TABLE 4
Scheduled Dataflow (SDF) vs. Superscalar (SS) for the Program Fibonacci for Different Data Sizes

ªIOº stands for In-Order and ªOOº for Out-of-Order.

TABLE 5
Scheduled Dataflow (SDF) vs. Superscalar (SS) for the Program Zoom for Different Data Sizes

ªIOº stands for In-Order and ªOOº for Out-of-Order.

TABLE 3
Schedule Dataflow (SDF) vs. Superscalar (SS) for the Program FFT for Different Data Sizes

ªIOº stands for In-Order and ªOOº for Out-of-Order.

TABLE 2
Scheduled Dataflow (SDF) vs. Superscalar (SS) for the Program Matrix Multiply for Different Data Sizes

ªIOº stands for In-Order and ªOOº for Out-of-Order.

contexts) and transferring threads between SP and EP
(FORKEP and FORKSP instructions). At present, data can
only be exchanged between threads by storing them in
threads' frames (memory). These memory accesses can be
avoided by storing the results of a thread directly into
another thread's register context. Our experiments show
that Matrix Multiply needs 16 frames with 10 parallel
threads (for data shown in Table 2). For this application, we
could have eliminated storing (and loading) thread's data in
memory by allocating all frames directly in register sets (by
providing sufficient register sets in hardware). It is our
contention that the hardware savings achieved by SDF (by
eliminating dynamic instruction scheduling logic) can be
used to either increase the number of register sets (thus
supporting greater thread-level parallelism) or add more
SPs and EPs; either of which can improve the performance
of SDF.

5.2 Execution Performance of SDF with Multiple
SPs and EPs

In our next experiment, we have investigated the perfor-
mance of SDF using multiple SPs and EPs and compared
the performance with superscalar architectures using
multiple Integer and Floating-Point units. We have utilized
an equal number of functional units in our comparisons by
setting the number of functional units in a superscalar
(#Integer ALUs + #Floating Point ALUs)6 equal to the
number of SPs and EPs (#SPs + #EPs). It is our contention
that conventional superscalar systems do not scale well
with increasing number of functional units and the
scalability is limited by the instruction fetch/decode
window size and the RUU size. SDF relies primarily on
thread level parallelism, and the decoupling of memory
accesses from execution. SDF performance can scale better
with a proper balance of workload among SPs and EPs.

Tables 7, 8, 9, 10 show the results for this series of
experiments. In order to provide greater opportunities for
dynamic instruction scheduling for the superscalar system, we
have set the Instruction Fetch & Decode window widths to 32

and RUU to 32 (Table 6). We have observed little change
in the performance (for the selected benchmarks) when
the window width is increased beyond 32. We have also
explored the impact of changing the RUU size. When
RUU is set to 64, the performance of superscalar showed
less than 5 percent improvement as compared to that
with RUU set to 32.

In Table 7, we show the data for the Matrix Multiply
program. As can be noted, when we add more SPs and EPs
(correspondingly, more Integer and Floating Point func-
tional units in Superscalar), SDF outperforms superscalar
architecture (shown in bold in Table 7), even when
compared to complex out-of-order scheduling used by
superscalar architectures.

SDF performance overtakes that of the Out-of-Order
superscalar architecture with three SPs and three EPs
(correspondingly, with three Integer and three FP ALUs
in the Superscalar system). It should also be noted that, for
the superscalar architecture, the performance improvement
with increasing number of functional units scales poorlyÐ
superscalar architecture exhibits no improved performance
beyond three Integer and three Floating Point ALUs. For
SDF, the performance is limited by SPsÐperformance is
improved consistently by adding more SPs.

This can more easily be seen from Fig. 9. The x-axis
shows the number of functional units (#SP + #EP for SDF;
#Integer ALUs + #FP ALUs for superscalar). The figure
shows the execution times for matrix multiplication with a
150*150 data size.

The next table (Table 8) shows the results for FFT. In this
case, SDF outperforms Out-of-Order Superscalar for data
sizes greater that 256 for all machine configurations. Once
again, SDF performance scales better with added SPs than
that of a superscalar when more functional units are added.

Fig. 10 shows the scalability of SDF for FFT (data size
256). Again, the x-axis shows the number of functional units
(#SP + #EP for SDF; #Integer ALUs + #FP ALUs for
Superscalar).

For Fibonacci (Table 9), as the number of SPs is
increased, SDF compares more favorably with Out-of-Order
Superscalar with a similar number of Integer units (as
compared to the data in Table 4). As before, SDF
performance scales better with more SPs and EPs than the
superscalar case (when more functional units are added).
Adding more FP ALUs in superscalar shows no improve-
ment since Fibonacci does not utilize Floating Point
arithmetic). Fig. 11 shows the scalability of SDF for
Fibonacci (data size 15) more clearly. The x-axis shows the
number of functional units (#SP + #EP for SDF; #Integer
ALUs + #FP ALUs for superscalar).

Table 10 shows the data for the Zoom program. Once
again, the performance of SDF scales better than Super-
scalar. With five SPs and four EPs, SDF outperforms the
Out-of-Order Superscalar system with five Integer and four
FP ALUs (shown in bold in Table 10), even for this program.
Fig. 12 shows the scalability of SDF for Zoom (for 200*200*4)
more clearly. The X-axis shows the number of functional
units (#SP + #EP for SDF; #Integer ALUs + #FP ALUs for
Superscalar).

KAVI ET AL.: SCHEDULED DATAFLOW: EXECUTION PARADIGM, ARCHITECTURE, AND PERFORMANCE EVALUATION 841

Fig. 8. Comparing SDF with a superscalar processor for FFT (ªIOº

stands for In-Order and ªOOº for Out-of Order) for different data sizes.

6. Again, each ALU in superscalar contains separate adder and
multiply/divide units. In SDF, each ALU is treated as a single unit
performing all arithmetic operations.

5.2.1 Summarizing

The data for each of the benchmarks (Tables 7, 8, 9, 10) is

consistent with our contention that SDF can be a viable

alternative with multiple SPs and EPs to Superscalar

architectures that utilize complex dynamic instruction

scheduling logic. In fact, it would be fairer to compare SDF

with more functional units (#EPs + #SPs) than those in a

Superscalar because of the hardware savings. Our SPs and EPs

are no more complex than a traditional functional unit used

in Superscalar systems. We eliminate the complex instruc-

tion issue, register renaming, and instruction retiring logic.

Scheduling of threads among available SPs and EPs is

performed at thread level (instead of at instruction level, as

done in Tera and SMT).

842 IEEE TRANSACTIONS ON COMPUTERS, VOL. 50, NO. 8, AUGUST 2001

TABLE 7
Scheduled Dataflow (SDF) vs. Superscalar (SS) for the Program Matrix Multiply for Different Data Sizes

ªIOº stands for In-Order and ªOOº for Out-of-Order.

TABLE 8
Scheduled Dataflow (SDF) vs. Superscalar (SS) for the Program FFT for Different Data Sizes

ªIOº stands for In-Order and ªOOº for Out-of-Order.

TABLE 6
Superscalar Parameters for Tables 7, 8, 9, and 10

5.3 Effect of Thread Level Parallelism on Execution
Behavior

Here, we will explore the performance benefits of increas-

ing the thread level parallelism (i.e., number of concurrent

threads) using one SP and one EP for SDF architecture. We

have used the Matrix Multiply for this purpose. We have

executed a 50*50 matrix multiply by varying the number of
concurrent threads. Each thread has executed five (un-
rolled) loop iterations. In this data collection, we concen-
trated only on the innermost loop of Matrix Multiply, unlike
previous data, where we have parallelized all three nested
loops of Matrix Multiply, see Fig. 13.

As can be expected, increasing the degree of parallelism
will not always decrease the number of cycles needed in a

KAVI ET AL.: SCHEDULED DATAFLOW: EXECUTION PARADIGM, ARCHITECTURE, AND PERFORMANCE EVALUATION 843

TABLE 9
Scheduled Dataflow (SDF) vs. Superscalar (SS) for the Program Fibonacci for Different Data Sizes

ªIOº stands for In-Order and ªOOº for Out-of-Order.

TABLE 10
Scheduled Dataflow (SDF) vs. Superscalar (SS) for the Program Zoom for Different Data Sizes

ªIOº stands for In-Order and ªOOº for Out-of-Order.

Fig. 9. Scalability of SDF over Superscalar for the program Matrix

Multiply (data size 150*150).

Fig. 10. Scalability of SDF over Superscalar for the program FFT (data

size 256).

linear fashion. This is due to the saturation of SP (reaching

more than 90 percent utilization with 10 threads). As shown

previously (Table 7, Fig. 9), adding additional SP and EP

units (i.e., Superscalar-SDF implementation) will allow us to

utilize higher levels of thread parallelism. Although not

presented in this paper, we have observed very similar

behavior with other data sizes for Matrix Multiply and with

the other benchmarks, Fibonacci, FFT, and Zoom.

5.4 Effect of Thread Granularity on Execution
Behavior

In the next experiment with Matrix Multiply, we have held
the number of threads at five and varied the thread
granularity by varying the number of innermost loop
iterations executed by each thread (i.e., degree of unrolling).
Once again, we have used one SP and one EP for this
experiment and concentrated only on the innermost loop of
Matrix Multiply.

The data size for Fig. 14 is 50*50. Here, the thread
granularity ranged from an average of 27 instructions (12
for SP and 15 for EP), with no loop unrolling, to 51 instructions
(13 for SP and 39 for EP), when each thread executed 10
unrolled loop iterations. Once again, the execution perfor-
mance improves (i.e., execution time decreases) as the threads
become coarser. However, the improvement becomes less
significant beyond a certain granularity. Similar behavior has
been observed for larger data sizes and other benchmarks. We
are exploring innovative compiler optimizations utilizing
static branch prediction to speculatively preload threads to
increase thread run-lengths (i.e. granularities).

6 CONCLUSIONS AND FUTURE WORK

In this paper, we have presented a nonblocking multi-
threaded dataflow architecture that utilizes control-flow-
like scheduling of instructions. Our architecture separates
memory accesses from instruction execution. Using an
instruction set simulator for our decoupled Scheduled
Dataflow (SDF), we have compared the execution perfor-
mance of SDF with that of a superscalar with multiple
functional units and aggressive Out-of-Order instruction
issue logic. When the thread level parallelism is high, SDF
substantially outperforms superscalar architectures (with
multiple functional units) using In-Order instruction ex-
ecution. SDF underperforms superscalar architectures with
Out-of-Order execution, when the instruction level paralle-
lism is high, but thread level parallelism is low. Also, the SP
in SDF can be a bottleneck since threads can only be
scheduled on EP after preload operations. The performance
can be improved by adding more SPs. As a matter of
observation, when more functional units are added, the
Out-of-Order execution of superscalar architecture does not
scale as well as SDF. Another factor that must be kept in
mind while analyzing the data is that SDF uses no branch
prediction (unlike superscalar architectures). At this time,
we did not optimize our instruction set or the compiler that
generated the code for the benchmarks.

SDF reduces the complexity of the processor by
eliminating the need for complex logic (e.g., scoreboard or
reservation stations) needed for resolving data dependen-
cies, register renaming, Out-of-Order instruction issue, and
branch predictions. The silicon area thus saved may be used
to include more register-sets and registers per set to
improve thread level parallelism and thread granularities
or add more SPs and EPs. We are working to improve both

844 IEEE TRANSACTIONS ON COMPUTERS, VOL. 50, NO. 8, AUGUST 2001

Fig. 11. Scalability of SDF over Superscalar for the program Fibonacci

(data size 15).

Fig. 12. Scalability of SDF over Superscalar for the program Zoom (data

size 200*200*4).

Fig. 13. Effect of thread level parallelism on SDF execution for the

program Matrix Multiply (data size 50*50).

Fig. 14. Effect of thread granularity on SDF execution for the program

Matrix Multiply (data size 50*50).

the instruction set and the compiler to produce more
efficient executions of programs. At present, SDF uses no

branch prediction, although we are planning to experiment
with static branch prediction to speculatively preload data

and increase run-lengths of our threads. Using compiler
optimizations, speculative executions, and branch-predic-

tion, we aim to increase the run-lengths of threads
executing on EP.

While decoupled access/execute implementations are

possible within the scope of conventional architectures, the
multithreading model presents greater opportunities for

exploiting the separation of memory accesses from the
execution pipeline. We feel that, even among multithreaded

alternatives, nonblocking models are more suited for the
decoupled execution. In our model, threads exchange data

only through the frame memories of threads (array data is
provided through I-structure memory). The use of frame

memories for thread data permits a clean decoupling of
memory accesses into preloads and poststores. This can

lead to greater data localities and relatively low cache-miss
rates.

ACKNOWLEDGMENTS

This research is supported in part by the following grants

from the US National Science Foundation: CCR-9796310,
EIA-9805216, and EIA-9820147 and Italian grant from CNR

203.15.9/97. the authors also than the anonymous reviewers
for their work.

REFERENCES

[1] A. Agarwal, R. Bianchini, D. Chaiken, K. Johnson, D. Kranz, J.
Kubiatowicz, B.-J. Lim, K. Mackenzie, and D. Yeung, ªThe MIT
Alewife Architecture and Performance,º Proc. 22nd Int'l Symp.
Computer Architecture, pp. 2-13, June 1995.

[2] A. Agarwal, J. Kubiatowicz, D. Kranz, B.-H. Lim, D. Yeoung, G.
D'Souza, and M. Parkinet, ªSparcle: An Evolutionary Processor
Design for Multiprocessors,º IEEE Micro, pp. 48-61, June 1993.

[3] R. Alverson, D. Callahan, D. Cummings, B. Koblenz, A. Porter-
field, and B. Smith, ªThe TERA Computer System,º Proc. 1990 Int'l
Conf. Supercomputing, pp. 1-6, July 1990.

[4] B.S. Ang, Arvind, and D. Chiou, ªStarTÐThe Next Generation:
Integrating Global Caches and Dataflow Architecture,º Technical
Report 354, Laboratory for Computer Science, Massachusetts Inst.
of Technology, Aug. 1994.

[5] Arvind and K.S. Pingali, ªA Dataflow Architecture with Tagged
Tokens,º Technical Memo 174, Laboratory for Computer Science,
Massachusetts Inst. of Technology, Sept. 1980.

[6] Arvind, R.S. Nikhil, and K.S. Pingali, ªI-Structures Data
Structures for Parallel Computing,º ACM Trans. Programming
Languages and Systems, vol. 11, no. 4, pp. 598-632, Oct. 1989.

[7] Arvind and R.S. Nikhil, ªExecuting a Program on the MIT
Tagged-Token Dataflow Architecture,º IEEE Trans. Computers,
vol. 39, no. 3, pp. 300-318, Mar. 1990.

[8] R.D. Blumofe, C.F. Joerg, B.C. Kuszmaul, C.E. Leiserson, K.H.
Randall, and Y. Zhou, ªCilk: An Efficient Multithreaded Runtime
System,º Proc. Fifth ACM Symp. Principles and Practice of Parallel
Programming (PoPP), pp. 206-215, July 1995.

[9] A.D.W. Bohm, D.C. Cann, J.T. Feo, and R.R. Oldehoeft, ªSISAL
Reference Manual: Language Version 2.0,º Technical Report CS91-
118, Computer Science Dept., Colorado State Univ., 1991.

[10] D. Burger and T.M. Austin, ªThe SimpleScalar Tool Set
Version 2.0,º Technical Report #1342, Dept. of Computer Science,
Univ. of Wisconsin, Madison, 1997.

[11] M. Butler et al., ªSingle Instruction Stream Parallelism Is Greater
than Two,º Proc. 18th Int'l Symp. Computer Architecture (ISCA-18),
pp. 276-286, May 1991.

[12] D.E. Culler and G.M. Papadopoulos, ªThe Explicit Token Store,º
J. Parallel and Distributed Computing, vol. 10, no. 4, pp. 289-308,
1990.

[13] R. Cytron, J. Ferrante, B.K. Rosen, M.N. Wegman, and F.K.
Zadeck, ªEfficiently Computing Static Single Assignment Form
and the Control Dependence Graph,º ACM Trans. Programming
Languages and Systems, vol. 13, no. 4, pp. 451-490, Oct. 1991.

[14] J.B. Dennis, ªDataflow Supercomputers,º Computer, pp. 48-56,
Nov. 1980.

[15] M. Edahiro, S. Matsushita, M. Yamashina, and N. Nishi, ªSingle-
Chip Multiprocessor for Smart Terminals,º IEEE Micro, vol. 20,
no. 4, pp. 12-20, July 2000.

[16] R. Govindarajan, S.S. Nemawarkar, and P. LeNir, ªDesign and
Performance Evaluation of a Multithreaded Architecture,º Proc.
First High Performance Computer Architecture (HPCA-1), pp. 298-
307, Jan. 1995.

[17] W. Grunewald and T. Ungerer, ªA Multithreaded Processor
Design for Distributed Shared Memory System,º Proc. Int'l Conf.
Advances in Parallel and Distributed Computing, pp. 206-213, Mar.
1997.

[18] J.L. Hennessy and D.A. Patterson, Computer Architecture: A
Quantitative Approach, second ed. Morgan Kaufmann, 1996.

[19] H.H.-J. Hum et al., ªA Design Study of the EARTH Multi-
processor,º Proc. Conf. Parallel Architectures and Compilation
Techniques (PACT), pp. 59-68, June 1995.

[20] R.A. Iannucci, ªToward a Dataflow/Von Neumann Hybrid
Architecture,º Proc. 15th Symp. Computer Architecture (ISCA-15),
pp. 131-140, May 1990.

[21] K.M. Kavi, H.S. Kim, and A.R. Hurson, ªScheduled Dataflow
Architecture: A Synchronous Execution Paradigm for Dataflow,º
IASTED J. Computers and Applications, vol. 21, no. 3, pp. 114-124,
Oct. 1999.

[22] K.M. Kavi, J. Arul, and R. Giorgi, ªExecution and Cache
Performance of the Scheduled Dataflow Architecture,º J. Universal
Computer Science, special issue on multithreaded and chip multi-
processors, vol. 6, no. 10, pp. 948-967, Oct. 2000.

[23] V. Krishnan and J. Torrellas, ªChip-Multiprocessor Architecture
with Speculative Multithreading,º IEEE Trans. Computers, vol. 48,
no. 9, pp. 866-880, Sept. 1999.

[24] M. Lam and R.P. Wilson, ªLimits of Control Flow on Parallelism,º
Proc. 19th Int'l Symp. Computer Architecture (ISCA-19), pp. 46-57,
May 1992.

[25] J.L. Lo et al., ªConverting Thread-Level Parallelism into Instruc-
tion-Level Parallelism via Simultaneous Multithreading,º ACM
Trans. Computer Systems, pp. 322-354, Aug. 1997.

[26] N. Mitchell, L. Carter, J. Ferrante, and D. Tullsen, ªInstruction
Level Parallelism vs. Thread Level Parallelism on Simultaneous
Multi-Threading Processors,º Proc. Supercomputing '99, http://
www.supercomp.org/sc99/proceedings/papers/mitchell.pdf,
1999.

[27] S. Onder and R. Gupta, ªSuperscalar Execution with Direct Data
Forwarding,º Proc. Int'l Conf. Parallel Architectures and Compiler
Technologies (PACT-98), pp. 130-135, Oct. 1998.

[28] G.M. Papadopoulos, ªImplementation of a General Purpose
Dataflow Multiprocessor,º Technical Report TR-432, Laboratory
for Computer Science, Massachusetts Inst. of Technology, Aug.
1988.

[29] G.M. Papadopoulos and D.E. Culler, ªMonsoon: An Explicit
Token-Store Architecture,º Proc. 17th Int'l Symp. Computer
Architecture (ISCA-17), pp. 82-91, May 1990.

[30] G.M. Papadopoulos and K.R. Traub, ªMultithreading: A Revisio-
nist View of Dataflow Architectures,º Proc. 18th Int'l Symp.
Computer Architecture (ISCA-18), pp. 342-351, June 1991.

[31] S. Sakai et al., ªSuper-Threading: Architectural and Software
Mechanisms for Optimizing Parallel Computations,º Proc. 1993
Int'l Conf. Supercomputing, pp. 251-260, July 1993.

[32] B. Shankar, L. Roh, W. Bohm, and W. Najjar, ªControl of
Parallelism in Multithreaded Code,º Proc. Int'l Conf. Parallel
Architectures and Compiler Techniques (PACT-95), pp. 131-139, June
1995.

[33] B. Shankar and L. Roh, ªMIDC Language Manual,º technical
report, CS Dept., Colorado State Univ., July 1996, http://
www.cs.colostate.edu/~dataflow/papers/Manuals/manual.pdf.

[34] J.E. Smith, ªDecoupled Access/Execute Computer Architectures,º
Proc. Ninth Ann. Symp. Computer Architecture, pp. 112-119, May
1982.

KAVI ET AL.: SCHEDULED DATAFLOW: EXECUTION PARADIGM, ARCHITECTURE, AND PERFORMANCE EVALUATION 845

[35] M. Takesue, ªA Unified Resource Management and Execution
Control Mechanism for Dataflow Machines,º Proc. 14th Int'l Symp.
Computer Architecture (ISCA-14), pp. 90-97, June 1987.

[36] H. Terada, S. Miyata, and M. Iwata, ªDDMP's: Self-Timed Super-
Pipelined Data-Driven Multimedia Processor,º Proc. IEEE, pp. 282-
296, Feb. 1999.

[37] R. Thekkath and S.J. Eggers, ªThe Effectiveness of Multiple
Hardware Contexts,º Proc. Sixth Int'l Conf. Architectural Support for
Programming Languages and Operating Systems, pp. 328-337, Oct.
1994.

[38] S.A. Thoreson and A.N. Long, ªA Feasibility Study of a Memory
Hierarchy in Data Flow Environment,º Proc. Int'l Conf. Parallel
Conf., pp. 356-360, June 1987.

[39] M. Tokoro, J.R. Jagannathan, and H. Sunahara, ªOn the Working
Set Concept for Data-Flow Machines,º Proc. 10th Ann. Symp.
Computer Architecture (ISCA-10), pp. 90-97, July 1983.

[40] J.Y. Tsai, J. Huang, C. Amlo, D. Lilja, and P.C. Yew, ªThe
Superthreaded Processor Architecture,º IEEE Trans. Computers,
vol. 48, no. 9, pp. 881-902, Sept. 1999.

[41] D.M. Tullsen et al., ªSimultaneous Multithreading: Maximizing
On-Chip Parallelism,º Proc. 22nd Int'l Symp. Computer Architecture,
pp. 392-403, 1995.

[42] D.W. Wall, ªLimits on Instruction-Level Parallelism,º Proc. Fourth
Int'l Conf. Architectural Support for Programming Languages and
Operating Systems (ASPLOS-4), pp. 176-188, Apr. 1991.

[43] K. Wilcox and S. Manne, ªAlpha Processors: A History of Power
Issue and a Look at the Future,º Cool Chips Tutorial in Conjunction
with MICRO-32, Dec. 1999.

[44] V. Milutinovic, Microprocessor and Multiprocessor Systems. Wiley
Int'l, 2000.

Krishna M. Kavi received the BE (electrical)
degree from the Indian Institute of Science and
the MS and PhD degrees (computer science and
engineering) from Southern Methodist Univer-
sity. He is currently a professor and eminent
scholar of computer engineering at the Univer-
sity of Alabama at Huntsville (UAH). Prior to
joining UAH, he was a professor of computer
science and engineering at the University of
Texas at Arlington. For two years (1993-1995),

he was a program manager at the National Science Foundation,
managing operating systems and programming languages and compi-
lers programs in the CCR Division. He was an IEEE Computer Society
(CS) Distinguished Visitor (1989-1991), editor of the IEEE Transactions
on Computers (1993-1997), and editor of the Computer Society Press
(1987-1991). His primary research interest lies in computer systems
architecture, including dataflow and multithreaded systems, memory
management, operating systems, and compiler optimization. His other
research interests include formal specification of concurrent processing
systems, performance modeling, and evaluation, load balancing, and
scheduling of parallel programs. He has published more than 125
technical papers on these topics. He is a senior member of the IEEE and
a member of the ACM.

Roberto Giorgi received the MS degree in
electronic engineering, summa cum laude, and
the PhD degree in computer engineering, both
from the University of Pisa, Italy. He is currently
an assistant professor in the Department of
Information Engineering, University of Siena,
Italy. He was a research associate in the
Department of Electrical and Computer Engi-
neering, University of Alabama at Huntsville. His
main academic interest is computer architecture

and, in particular, multithreaded and multiprocessors systems. He is
exploring coherence protocols, compile time optimizations, behavior of
user and system code, architectural simulation for improving the
performance of a wide range of applications from desktop to
embedded-systems, web-servers, and e-commerce servers. He took
part in the ChARM project in cooperation with VLSI Technology Inc.,
San Jose, California, developing part of the software used for
performance evaluation of ARM-processor-based embedded systems
with cache memory. He is a member of the IEEE, IEEE Computer
Society, and ACM.

Joseph Arul received the BSc degree in
mathematics in 1981 from Indore University,
India, and the MS degree in computer science in
1994 from De Paul University, Chicago. From
1994-1995, he was a lecturer at Fu Jen Catholic
University, Taiwan. Currently, he is a computer
engineering PhD student at the University of
Alabama at Huntsville (UAH). His current re-
search interests are computer architecture,
parallel and distributed computing, multi-

threaded programs, and compilers. He is a student member of the
IEEE and the IEEE Computer Society and a member of the ACM.

. For further information on this or any computing topic, please
visit our Digital Library at http://computer.org/publications/dlib.

846 IEEE TRANSACTIONS ON COMPUTERS, VOL. 50, NO. 8, AUGUST 2001

