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Abstract
In modern computer systems loops present a great

deal of opportunities for increasing Instruction Level and
Thread Level Parallelism. Loop unrolling is a technique
used to obtain greater ILP while independent loop
iterations are assigned to different threads to obtain
greater TLP. However, techniques are needed to avoid
unnecessary checks to assure that only the correct
number of iterations are executed. In this paper we
evaluate simple loop transformation techniques that can
improve the performance by eliminating some
unnecessary conditional instructions checking for
iteration bounds. We present information on the number
of instructions eliminated as well as on the improved
branch prediction rates and execution performance
improvements. Our techniques are applicable to most
modern architecture including superscalar,
multithreaded, VLIW or EPIC systems.

Key words. ILP, TLP, Loop Level Parallelism, Branch
Prediction, Code Transformation.

1. Introduction
Instruction level parallelism (ILP) is needed to fully

utilize the available functional units in Superscalar and
VLIW architectures. Loops can provide such ILP, since
loops can be unrolled to hide dependencies among
instructions as well as stalls resulting form longer
latencies encountered by some instructions. However,
since the number of iterations is unknown at compile
time, the unrolled loop must include test instructions to
assure that a loop is executed correctly.

Thread level parallelism (TLP) is needed to fully
utilize hardware contexts available in multithreaded
architectures. Loop iterations can be allocated to different
threads to facilitate higher levels of thread parallelism.
The goal of such parallelization efforts is to maximize
resource utilization, minimize overhead and data
dependencies among threads. One technique to achieve
these goals is to spawn a fixed number of threads at a
time, and new threads are created only after previously
spawned threads complete. This is the approach we take
in our multithreaded system called Scheduled Dataflow
(SDF) [1, 5-8].

The literature abounds with loop optimization
techniques particularly for multiprocessor systems (see
[4] for a survey of some such techniques). Loop unrolling

techniques for modern computer architectures are well
understood and reported in textbooks such as [3].

2. Multithreading and Thread Level Parallelism
A multithreaded system contains multiple “loci of

control” (or threads) within a single program; the
processor is shared by these multiple threads leading to
higher utilization. A detailed survey of multithreading at
programming level, system level and architecture level
can be found in [9]. Lately, there is an increasing interest
in providing hardware support for multithreading.

Our Scheduled Dataflow (SDF) [1, 5-8] architecture
differs from other multithreaded architectures in two
ways: i) our programming paradigm is based on non-
blocking threads,, and ii) complete decoupling of all
memory accesses from execution pipeline. Data is pre-
loaded into an enabled thread's register context prior to its
scheduling on the execution pipeline. After a thread
completes execution, the results are post-stored from its
registers into memory. We use two separate processing
elements: the Synchronization Processor (SP) performs
pre-load and post-store while the Execution Processor
(EP) performs actual computations of a thread. EP does
not access memory (operates only on data in registers)
while SP does Load and Store to move data between
memory and registers. Unlike Superscalar, our
architecture performs no (dynamic) out-of-order
execution and thus eliminates the need for complex
instruction issue and retiring hardware.

Previously we reported results comparing our SDF
architecture with superscalar and VLIW systems [1, 5-8].
We also reported how SDF scales better than other
systems as we increase the number of functional units and
the number of register contexts [1]. This behavior can also
be observed from the data presented in this paper in later
sections.  In our research we are continuing to explore
innovative compiler optimizations to improve the
performance of SDF even further. In this paper, we
present how loop level parallelism can be translated into
thread level parallelism, while optimizing resource
utilization and minimizing overhead due to thread
creation and context switches. We will use our SDF to
explore how a simple loop transformation can aid in these
efforts.

2.1. SDF Threads for Loops.
In our system, we create threads using FALLOC

instruction, which allocates a frame for the thread. The



created thread will receive its inputs in the frame and will
be enabled only after receiving all the required inputs.
Upon receiving all inputs, the thread is allocated a register
set and its input data is transferred from the frame
memory (and other data from I-structures) into its
registers -- this phase is called the pre-load phase, and is
executed by the SP. Then the thread is scheduled for
execution on the EP; since all the data is in registers, EP
will not access memory. The results of a thread (upon
completion of execution) are stored in the frames of
awaiting threads (or stored in shared I-structures) – the SP
also performs the post-storing.  Due to the non-blocking
nature of SDF, our threads are very fine grained. When
considering loops, we generate one or more threads for
each iteration. However, spawning a thread requires the
availability of a frame and a register set as described
above. So we spawn only a limited number of threads
corresponding to a few iterations of a loop at a time
(depending on the number of hardware contexts). After
the spawned threads complete, we create another set of
threads, and repeat this process until all loop iterations are
completed. This can be viewed as transforming a loop as
shown below, assuming that k threads are spawned at a
time to execute k loop iterations in parallel.

Such transformation works well if the loop is executed an
even multiple of k times. If not, we need to use additional
tests as shown below.

The non-blocking nature of SDF incurs overhead when
servicing conditional branches, leading to substantial
overheads in parallelizing loops. We can transform the
original loop into two new loops as shown below, where
n’ is an even multiple of k.
Now we can spawn k threads at a time to parallelize the
first loop and execute the second loop sequentially by

creating only one thread for each of the remaining
iterations. In general, we need to compute the upper and
lower bounds for the two loops after transformation and
these values depend on whether the original loop is
counting up or counting down, and the step value. Note
that this transformation is done at compile time and incurs
no extra hardware.

2.2. Experimental Results.
  We used matrix multiplication and a picture zooming

code segment published in [10] to explore the
improvements resulting from our loop transformation. For
our experiments we spawned 5 threads at a time to
execute 5 iterations of a loop in parallel (that is, k =5),
and varied the number of times a loop is actually
executed. Table 1 shows the data for matrix
multiplication.

Table 1: Data For Matrix Multiplication (1SP-1EP)

Data Size Execution
Reduc

tion Total
Reduc
tion

Cycles Instructions
53*53 old 4,867,345 25.5% 8,112,999 27.4%

new 3,626,615 5,893,200

104*104 old 31,505,289 39.9% 51,788,231 44.2%

new 18,938,761 28,916,551

151*151 old 77,057,483 27.2% 123,963,633 24.7%

new 56,128,581 93,393,532
As can be seen from the table, the loop

transformation results in substantial performance
improvements (labeled “new”). The table also shows the
reductions achieved in the total number of instructions1

executed when the loop transformation is used. The
overall reduction in execution cycles is greater than the
reduction in total number of instructions showing the
impact of eliminating branch instructions.

In SDF we can vary the number of functional units
(SP and EP’s) to achieve higher levels of performance.
Table 2 shows the performance gains obtained using the
proposed loop transformation with varying number of SPs
and EPs. This table shows that the impact of the loop
transformation is greater for more functional units. As an
aside, the table also shows the scalability of our SDF
architecture.

In the next two tables (Tables 3 and 4) we present the
data obtained for another benchmark, a picture zooming
code segment [10]. The reductions are less significant for
this application since the loop bodies contained
conditional instructions unrelated to the thread level
parallelism being addressed by our loop transformation –
these conditional instructions cannot be eliminated by our

                                                  
1 Note that the execution cycles are less than the number of
instructions  because of the use of two processing units, EP and
SP. The numbers in show that we achieve approximately 1.6
instructions per cycles (IPC) with two processing elements.

for (j=n, j>0, j=j-k){
    if (j≥k) {spawn_thread(j);… spawn_thread(j-k+1);}
    else if (j≥k-1) {spawn_thread(j);… spawn_thread(j-k+2);}
    else if ….
    else if (j≥2) {spawn_thread(j); spawn_thread(j-1);}
    else  {spawn_thread(j);}
     }

for (i=n; i>0; i=i-1)
    {loop_body;}

for (j=n, j>0, j=j-k)
    {spawn_thread(j);
    spawn_thread(j-1);
      ……..
     spawn_thread(j-k+1);}

for (j=n, j>0, j=j-k){
if (j≥k) {spawn_thread(j);… spawn_thread(j-k+1);}
else if (j≥k-1) {spawn_thread(j);… spawn_thread(j-k+2);}
else if ….
else if (j≥2) {spawn_thread(j); spawn_thread(j-1);}

            else  {spawn_thread(j);}
     }

for (i=n; i>0; i=i-1)
    {loop_body;}

for (i=n’; i>0; i=i-1)
{loop_body;}

for (j = n; j>n’; j=j-1)
{loop_body;}



transformation. Table 4 shows that the reductions improve
as we add more functional units.

3. Loop Unrolling and Instruction Level Parallelism
(ILP)

Loop unrolling relies on replicating the loop body,
increasing the size of the straight-line code that can
provide higher levels of ILP. Thus unrolling is useful in a
variety of processors, including simple pipelines,
statically scheduled Superscalar and VLIW systems.
Consider the following loop.

The code segment can be translated into MIPS like
assembly language shown below.

The dependencies between the load (LD) and the add
(ADDD), between the add and the store (SD) and between
the decrement  (DADDUI) and the conditional branch
(BNE) instruction, prevent the hardware from exploiting
much, if any ILP. In order to provide greater ILP, we can
unroll the loop such that each new iteration actually
corresponds to several iterations of the original loop.
Below we show unrolling of 4 iterations (both in its
original form and after reordering, to eliminate stalls due
to instruction latencies).

We assumed that the loop is executed a multiple of 4
times, hence we needed to test only at the end every 4
original loop iterations. If the number of times a loop is
executed is unknown at compile time, it may not be
possible to either unroll the loop, re-order loop instruction
or avoid conditional instructions (and associated
increments/decrement of pointer index register such as R1

in above code example). It would be more difficult to re-
order instructions across these branch instructions (unless
speculation is used).

However, the loop can be transformed into two loops
(similar to the transformation shown in section 2.1) at
compile time as shown.

Here n’ is the largest multiple of 4 but smaller than n.
The first loop will be executed a multiple of 4 times, and
thus can be unrolled four times as before. We may choose
not to unroll the second loop. Once again, we need to
compute the upper and lower bounds for the two loops
after transformation and these values depend on whether
the original loop is counting up or counting down, and the
step value. Although this code transformation appears
obvious, we wanted to explore the actual performance
improvements that can be obtained on superscalar and
VLIW  architectures.

3.1. Experimental Results For Superscalar systems.
For this experiment, we used Simplescalar tool [2]

that simulates superscalar architecture using MIPS
instructions. We used matrix multiplication and a picture
zooming program segment [10] as our benchmarks.

We unrolled loops in both these applications 5 times,
but varied the total number of times a loop is executed.
The execution cycles, total number of instructions
executed, number of branch instructions executed, branch
mis-prediction rates, and instruction cache miss rates are
used to compare the performance improvements obtained
when the code transformation is used (new) with original
code (old). Table 5 shows this data for matrix
multiplication. As can be seen from the data, although the
execution cycles have not shown impressive reductions,
the number of branch instructions and the branch mis-
prediction rates have shown dramatic improvements.
With modern deeply pipelined systems (unlike that
simulated by Simplescalar tool), the higher accuracy of
branch prediction, and fewer branch instructions can lead
to significant performance gains. It should be noted that
the improvement depends not only on the configuration
but also on how close the number of iterations are to a
multiple of 5 (our degree of unrolling).

We also repeated our experiment with different
number of functional units, by changing the number of
Floating point and Integer units. This data for matrix
multiplication is shown in Table 6. Once again, the loop
transformation has shown some reduction in the total
number of execution cycles for all configurations. This
data is presented to emphasize that superscalars do not
scale as well as SDF with more multiple functional units.

for (i=n; i>0; i=i-1)   x[i] = x[i] +s;

Loop:   LD        F0, 0(R1)  Loop:  LD  F0, 0(R1)
            ADDD   F4, F0, F2           LD   F6, -8(R1)
             SD      F4, 8(R1)           LD   F10, -16(R1)
             LD       F6, -8(R1)           LD   F14, -24(R1)
             ADDD   F8, F6, F2           ADDD   F4, F0, F2
             SD       F8, -8(R1)           ADDD  F8, F6, F2
             LD      F10, -16(R1)           ADDD  F12, F10, F2
             ADDD   F12, F10, F2           ADDD  F16, F14, F2
             SD       F12, -16(R1)           SD   F4, 8(R1)
             LD       F14, -24(R1)           SD   F8, -8(R1)
             ADDD    F16, F14, F2           SD   F12, -16(R1)
             SD      F16, -24(R1)           SD   F16, -24(R1)
             DADDUI  R1, R1, #-32          DADDUI  R1, R1, #-32
             BNE      R1, R2, Loop          BNE   R1, R2, Loop

              Before Reordering          After Reordering

for (i=n’; i>0; i=i-1)
      x[i] = x[i] +s;
for (j = n; j>n’; j- j-1)
     x[j] = x[j] + s;

for (i=n; i>0; i=i-1)
   x[i] = x[i] +s;

Loop: LD         F0, 0(R1)      ; Load Array element into F0
ADDD F4, F0, F2      ; add scalar value F2
SD F4, 0(R1)      ; store updated value
DADDUI R1, R1, #-8     ;decrement pointer
BNE R1, R2, Loop  ; branch if not done



In the next experiment, we used the picture zooming
program segment [10]. Table 7 shows the improvements
obtaining using the proposed loop transformation (similar
to Table 5). The improvements are not significant because
one of the loops of zoom includes many conditional
branches. This can be seen by the smaller reduction in the
branch instructions shown in Table 7.

3.2. Experiments with VLIW architecture.
In Very Long Instruction Word (VLIW) or Explicitly

Parallel Instruction Computer (EPIC) architectures, each
instruction packet contains multiple, independently
executable instructions. Each of these instructions is
executed on available hardware or functional units. Loop
unrolling is used to produce longer sequences of straight
code whereby independent instructions can be grouped
together in VLIW instruction packages. For this
experiment we used the Trimaran2 infrastructure that
includes a VLIW architecture simulator and an optimizing
compiler. In Table 8, we utilized a 2-wide VLIW machine
(comprising one FP and one Integer instruction) for
matrix multiplication. We unrolled the innermost loop 5
times. As can be seen from the table, the loop
transformation (labeled new) shows higher reductions in
execution cycles and total number of branch instructions
executed as compared data for superscalar (shown in
Tables 5 and 6). Moreover, the improvements are even
better for wider VLIW  (8-wide, comprising 4 FP and 4
Integer instructions) since more instruction slots can be
filled since the unrolling of the first loop requires no
conditional instructions.

Table 9 shows the results for zoom. As with the other
architectures the performance improvements for zoom are
less significant. However, the total number of branch
instructions eliminated by the loop transformation is still
significant. This in turn can minimize the number of
predicated instructions that are needed in VLIW and EPIC
architectures to speculatively execute instructions along
the branch paths to achieve higher ILP.

4. Conclusions
In our ongoing research we have been exploring

computer architectural innovations and compiler
optimizations to achieve higher performance levels while
minimizing the hardware complexity. We have proposed
and evaluated a multithreaded architecture that supports
fine-grained parallelism efficiently. In our search for new
compiler optimizations for our multithreaded architecture
(known as the Scheduled Dataflow, SDF), we are
discovering some optimizations that are unique to
decoupled and multithreaded architectures, and some
techniques that are applicable to a wider variety of models
including VLIW and Superscalar systems.

                                                  
2 See http://www.trimaran.org/

In this paper we have reported on a compile time
loop transformation that can be used to increase both
instruction level parallelism  (ILP) and thread level
parallelism (TLP) while eliminating significant number of
conditional instructions. We have reported the resulting
improvements in execution cycles, reduction of branch
instructions executed, improvements in branch prediction
accuracy, and reduction of (instruction) cache miss rates
on SDF, Superscalar and VLIW architectures.
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Table 2. Performance for Matrix Multiply using Varying Number of Functional Unit
Data Size " 2SP/2EP Reduction 3SP/3EP Reduction 4SP/4EP Reduction

53*53 old 3,824,933 34.9% 3,549,651 40.6% 3,527,179 38.9%

" new 2,488,273 " 2,109,058 " 2,154,002 "

104*104 old 24,041,721 50.9% 21,921,785 52.2% 21,748,729 51.4%

" new 11,798,841 " 10,479,289 " 10,565,817 "

151*151 old 55,600,979 45.0% 48,897,485 46.3% 48,350,261 47.6%

" new 30,589,490 " 26,257,300 " 25,345,260 "

Table 3. Performance Comparisons for Zoom (1SP-1EP)
Data Size Execution Reduction Total Reduction

Cycles Instructions

251*251*4 old 9690158 5.7% 16834137 3.5%

new 9139480 15920537

519*519*4 old 41542369 5.3% 72288465 3.4%

new 39346496 68425588

1024*1024*4 old 160650292 4.1% 278488133 2.4%

new 154126404 267791469

Table 4. Performance for Zoom using Varying Number of Functional Units
Data Size 2SP/2EP Reduction 3SP/3EP Reduction 4SP/4EP Reduction

251*251*4 old 4201776 20.2% 1997996 24.1% 1380536 32.0%

new 3354416 1516845 938792

519*519*4 old 18061236 20.6% 8726502 25.6% 5939991 35.3%

new 14340022 6490666 3842728

1024*1024*4 old 68790308 19.4% 32693284 21.6% 21226532 30.1%

new 55479348 25630772 14835764

Table 5. Performance Improvements for matrix multiply (1Integer/1FP units)
Data Size " Execution Reduction Total Branch Reduction Branch Reduction

" " Cycles " Instructions Instructions " Miss predict "

53*53 Old 15,106,721 3.3% 15,649,081 144,467 46.7% 5772 48.6%

" New 14,600,815 " 14,949,347 77,049 " 2,964 "

104*104 Old 112,770,174 1.7% 115,620,787 974,858 44.4% 21838 49.5%

" New 110,811,643 " 112,818,763 542,216 " 11022 "

151*151 Old 345,245,133 3.0% 352,755,560 2,988,537 48.1% 45856 49.7%

" New 334,801,382 " 340,282,505 1,551,888 " 23053 "



Table 6. Matrix multiplication with varying number of functional units
Data Size Old/new 2INT/2FP Reduction 3INT/3FP Reduction 4INT/4FP Reduction

53*53 Old 7,577,777 3.4% 5,523,459 4.0% 5,088,545 3.6%

" New 7,316,968 " 5,304,544 " 4,903,061 "

104*104 Old 56,632,806 1.7% 41,861,802 2.3% 38,654,964 2.0%

" New 55,645,718 " 40,916,784 " 37,881,737 "

151*151 Old 173,293,194 3.0% 128,050,264 3.5% 118,277,086 3.2%

" New 168,083,742 " 123,557,479 " 114,446,011 "

Table 7. Performance Improvements for Zoom (1Integer/1FP units)
Data Size Execution Reduction Total Branch Reduction Branch Reduction

Cycles Instructions Instructions Miss-predict
251*125*4 Old 24526903 0.3% 25148193 116914 22.3% 598 42.5%

New 24452194 25003374 90816 344
519*519*4 Old 105370877 0.5% 8299544 605579 17.1% 11505 4.6%

New 104855281 107969098 502303 10981
1024*1024*4 Old 253180650 0.3% 264844370 2645926 15.6% 22613 4.5%

New 252390873 264042569 2233264 21590

Table 8. Performance data for Matrix Multiplication on VLIW
2-wide 8-wide Total

Data Size Old/New Execution Reduction Execution Reduction Branch Reduction

Cycles Cycles Instructions
53*53 Old 7883420 12.7% 7872130 16.0% 73088 53.8%

New 6885154 6615489 33762
104*104 Old 58852344 14.9% 58808975 17.6% 486825 48.9%

New 50089427 48434579 248873
151*151 Old 180929457 17.8% 180838101 20.4% 1527819 52.2%

New 148754490 144011882 729784

Table 9. Performance data for Zoom on VLIW
2-wide 8-wide Total

Data Size Execution Reduction Execution Reduction Branch Reduction

Cycle Cycles Instructions
251*251*4 Old 63049140 0.1% 57698823 0.2% 89859 15.9%

New 62984131 57579096 75552
519*519*4 Old 270573583 0.5% 247686201 0.6% 490456 10.6%

New 269344072 246300990 438556
1024*1024*4 Old 969789639 0.2% 934544582 0.3% 1778689 11.9%

New 967771335 931922118 1567745


