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ABSTRACT 

This paper shows that even very small reconfigurable data caches, 
when split to serve data streams exhibiting temporal and spatial 
localities, can improve performance of embedded applications 
without consuming excessive silicon real estate or power. It also 
shows that neither higher set-associativities nor large block sizes 
are necessary with reconfigurable split cache organizations. We 
use benchmark programs from the MiBench suite to show that our 
cache organization outperforms an 8k unified data cache in terms 
of miss rates, access times, energy consumption and silicon area. 
Finally we show how the saved area can be utilized for supporting 
techniques for improving performance of embedded systems. Our 
design enables the cache to be divided into multiple partitions that 
can be used for different processor activities other than 
conventional caching. In this paper we have evaluated one of 
those options to support “prefetching”. 

Categories and Subject Descriptors 

C.1.1. [Processor Architectures]: Single Data Stream Architecture   
--- cache memories 

General Terms 

Performance, experimentation, measurement and Design. 

Keywords 

Embedded systems, Split cache, reconfigurability, locality, cache. 

1. INTRODUCTION 
In today’s microprocessors, cache has become a vital element in 
improving performance over a wide range of applications. 
Studies have found that the on-chip cache is responsible for 
50% of an embedded processor’s total power dissipation 
[3,5,16]. For that reason we feel that it is worthwhile 
investigating new reconfigurable cache organizations to address 

both performance and the power requirements. The performance 
of a given cache architecture is largely determined by the 
behavior of the applications. Unfortunately the manufacturer 
typically sets the cache architecture as a compromise across 
several applications. This leads to conflicts in deciding on total 
cache size, line size and associativity. For embedded systems 
where everything needs to be cost effective, this “one-size-fits-
all” design philosophy is not adequate. In this paper we apply 
reconfigurability to the design of caches that address these 
conflicting requirements and explore how to design caches that 
achieve high performance for embedded applications while 
remaining both energy and area efficient.  

The key contributions of this work are the following. First, we 
introduce a novel cache architecture for embedded 
microprocessor platforms. This proposed cache will detect 
program access patterns and fine-tune cache policies to improve 
both data localities and the overall cache performance for 
embedded applications. Second, our design enables the cache 
(as we save area) to be divided into multiple partitions that can 
be used for purposes other than conventional caching. In this 
paper we evaluate our cache architecture that uses 
reconfigurability coupled with split data caches (separate array 
and scalar data caches) complemented by a very small victim 
cache. Our goal is to reduce (silicon) area, access time, and 
dynamic power consumed by cache memories while retaining 
performance gains. In our design, we address the problem of 
improving cache performance in embedded systems through the 
use of separate array and scalar data caches. Then we further 
extend our architecture by augmenting the scalar cache with a 
victim cache [19]. Victim caches are based on the fact that 
reducing cache misses due to line conflicts for data exhibiting 
temporal locality is an effective way of improving cache 
performance, without increasing the overall cache associativity. 
In this paper we also study how our cache organizations can be 
reconfigured based on an application’s behavior.  By setting a 
few bits in a configuration register, the cache can be configured 
by software for optimum sizes for each of our three structures 
(array cache, scalar cache, victim cache) and use the rest of the 
unused area for other processor activities. The cache system can 
also be configured to shutdown certain regions in order to 
effectively reduce energy consumption. For both cases, the 
reconfiguration leads to only a small overhead in terms of time, 
power, silicon area and hardware complexity. In this paper, we 
provide the details of our configurable cache. When using our 
augmented split caches for embedded applications, our results 

 

Permission to make digital or hard copies of all or part of this work for 
personal or classroom use is granted without fee provided that copies are 
not made or distributed for profit or commercial advantage and that 
copies bear this notice and the full citation on the first page. To copy 
otherwise, or republish, to post on servers or to redistribute to lists, 
requires prior specific permission and/or a fee. 
SAC’07, March 11-15, 2007, Seoul, Korea. 
Copyright 2007 ACM 1-59593-480-4/07/0003…$5.00. 

 



show excellent reductions in both memory size and memory 
access time, translating into reduced power consumption. Our 
cache architecture reduces the cache area by as much as 78%, 
execution time by as much as 55%, and energy consumption by 
as much as 67%, when compared with an 8k byte direct-mapped 
unified data cache with a 32k byte level-2 cache. If we consider 
tradeoffs in performance improvement, we can achieve as much 
as a 83% reduction in area consumption (without any increase 
in execution time) and by as much as a 61% decrease in 
execution cycles (without any increase in silicon area). These 
reductions can be profound when working with small L-1 
caches often found in embedded systems.  

The space savings resulting from our cache structures may be 
used for many architectural features to further improve the 
performance of embedded systems. Techniques such as 
hardware prefetching, instruction reuse, branch predictions have 
been used effectively in desktop applications. However these 
techniques require additional hardware for implementing look-
up tables, which lead to increased size and power requirements. 
Since reductions in cache sizes are acquired in our designs 
(while not sacrificing performance or increasing power 
consumptions), the look-up tables for these optimizations could 
be implemented in a partition of the reconfigurable cache 
instead of using other valuable chip area. In this paper we study 
one such technique, prefetching, with reconfigurable caches. 
With prefetching our cache architecture reduces execution time 
by as much as 67% when compared with an 8kbyte direct-
mapped unified data cache with a 32k byte level-2 cache. Even 
with the additional power consumed by the prefetching, our 
studies show significant reductions in energy consumption.  

The rest of the paper is organized as follows. Section 2 provides 
a survey of related work, while section 3 describes the 
architectural design of our reconfigurable cache. In section 4, 
we describe the benchmarks and experimental set up used in our 
evaluation. In section 5 we evaluate our reconfigurable cache 
and in section 6 we evaluate our prefetching option. Finally we 
present our conclusions in section 7. 

2. PREVIOUS WORK 
Ranganathan et al [22] proposed a reconfigurable unified data 
cache architecture for general purpose processors. They 
proposed dividing cache into different partitions that can be 
used for different processor activities. Ranganathan et al did not 
provide an analysis of silicon area involved in the 
reconfigurable cache, but explored different design alternatives, 
focusing on one option that of using the saved silicon area for 
“instruction reuse”. We provide a detailed analysis of silicon 
area involved in our cache organizations. We also perform 
detailed analyses of execution cycles and energy consumed 
using our cache structures to demonstrate the gains achieved by 
our cache. We concentrate on embedded benchmarks for our 
evaluation. Albonesi et al [11] proposed “selective cache ways” 
to selectively disable portions of unified data cache, trading off 
performance with power. In our analyses, in addition to trading 
off performance with power, we also explore how unused cache 
portions can be used for other purposes (such as prefetch 
buffers), providing further options in design trade-offs.  

Work by Vahid et al [4] is closely related to our research, as 
they evaluate reconfigurable unified data caches for embedded 

applications. Unlike the work by this research team, we do not 
see associativity as an important reconfigurable design 
parameter. This is because, both our array and scalar caches are 
designed as direct mapped caches, and we use victim caches to 
solve associativity for scalar data. In addition to showing 
performance gains and power reductions, we also analyze 
silicon area savings obtained from our caches. Instead of 
shutting down cache area to save power, we also explore how 
the unused portion of cache area can be used for other 
architectural features that can improve applications’ 
performance. To summarize, the most important significance of 
our work is our comprehensive analysis of execution cycles and 
area reductions achieved by our caches, which is not done by 
anyone before. Several studies have been reported on split data 
caches [8, 12, 18, 20, 25] but there has been no work reported 
on reconfigurable split data caches. 

3. ARCHITECTURAL  DESIGN 
Figure 1 shows our proposed Reconfigurable Split cache 
architecture, with array and scalar data caches, victim cache with 
scalar data cache and the instruction cache augmented by a small 
prefetching buffer. In order to speedup access, current cache 
implementations partition caches into multiple sub-arrays [7,10]. 
For example, the SA-110 embedded microprocessor [7] uses 32-
way associative 16KB L1 instruction and Data caches, each of 
which is divided into 16 fully associative sub-arrays. With this 

 

 

 

 

 

 

 

 

Figure 1. Reconfigurable split cache organization 

partitioning in place, our reconfigurable caches can easily be 
implemented if there are at least as many sub-arrays as the 
maximum number of partitions (because for a reconfigurable 
cache different partitions must be implemented in physically 
different sub-arrays indexed by different addresses). In order to 
implement reconfigurable caches, only a small amount of 
additional logic is required. Additional wiring is also necessary 
from the cache to the processor for directing data to/from the 
various partitions. The most challenging part in designing a 
reconfigurable cache is the implementation of a mechanism to 
divide the cache into different (variable sized) partitions and 
designing an addressing scheme that can address any partition. 
Ranganathan et al [22] have already proposed two partitioning 
and addressing schemes: “Associativity based partitioning” and 
“Overlapped wide-tag partitioning”. In our design we use 
“Overlapped wide-tag partitioning” scheme. In this scheme, the 
key challenge is to devise a mechanism so that the size of the 
array tag can be dynamically changed with the size of partitions 
(since the number of bits in a tag and index fields of the address 
will vary based on the size of the partition). We restrict the size of 
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each partition to a power of 2 and support a limited number of 
possible configurations (usually two or three). A reconfigurable 
cache with N partitions must accept N addresses and generate N 
hit/miss signals. In order to track the number and sizes of the 
partitions and control hit/miss signals, a special hardware register 
is needed. This register will be a part of the processor state. 

The additional logic will add to silicon area, access time and 
power consumed. Ranganathan et al [22] have studied the impact 
of reconfigurable cache organizations on cache access times and 
showed that for a small number of partitions, reconfigurable 
caches increase the cache access time by less than 5%. In a 
different study, Vahid et al have shown that a reconfigurable 
cache does not consume significantly additional power over 
traditional cache structures [4]. In this paper we have used the 
CACTI timing model [23] to obtain values for these overheads of 
our reconfigurability. 

A reconfigurable cache can be used in different ways. The best 
configuration for an application can be determined by extensive 
simulations (or actual executions). Software profiling tools, 
used to identify portions of code that exhibit different cache 
behaviors, can also be used. Reconfiguration can also be 
implemented dynamically with appropriate hardware profiling 
and an automatic cache tuner. 

4. EXPERIMENTAL METHODS 
In this section we describe the experimental framework and the 
benchmarks used for this study. We also define performance 
metrics and power models used in our studies. 

4.1 Benchmarks 
We use benchmark programs from the MiBench suite[17]. 
MiBench includes benchmarks from several embedded 
application 

domains. In order to cover a wide range of applications in, in 
our study we included benchmarks from (1) Automotive (2) 
Office Automation, (3) Networking, (4) Security, and (5) 
Telecommunications groups. The descriptions of the 
benchmarks used in our studies are listed in Table 1. Since the 
performance of our system depends on the percentage of 
memory references caused by an application, we also include 
the load/store percentage for each benchmark.  

4.2 Simulation 
Our experimental environment builds on the SimpleScalar 
(version 3.0d) simulation tool set [6] modeling an out-of-order 
speculative processor with a two-level cache hierarchy. We rely 
on default parameters defined by SimpleScalar. 

The base cache system, which is the cache with which we 
will compare our configurable cache, uses an 8k byte L1 
instruction cache, an 8k byte L1 data cache and a 32 k 
byte unified L2 cache. Our performance evaluation 
includes silicon area needed for cache structures, because 
embedded systems designers are interested not only in 
performance but also in better use of silicon area. We use  
CACTI[23] for computing silicon areas need by caches. 
We use a modified CACTI timing model to obtain 
overheads of our reconfigurability. We include energy 
consumed due to misses and off-chip accesses. Our 

analysis use the following general equations to compute 
the dynamic power consumption of a cache. 

 

power = Hit * power_hit + Miss * power_miss  

power_miss = OPC + PCW + FTM 

 

 We obtained values for hits and misses for our array and 
scalar caches by executing the selected benchmarks on the 
Simplescalar simulator. Here it should be mentioned that  

 

Table 1: Descriptions of benchmarks 

 
different cache structures have different power_hit values based 
on the cache type, size and hit type of each access. The PCW is 
the power consumed to write an entire line to the cache. OPC is 
the power needed for off-chip access and calculated as 0.5 * Vdd2 

* (0.5 *Wdata + Waddr)) * 20pF  [15, 16, 21, 23, 24], where Wdata 

and Waddr are the number of bits for both the data sent/returned 
and the address sent to the next level of memory on a miss 
request. The last term is the load capacitance for off-chip 
destinations. At any miss the overhead for searching in cache is 
also included as FTM (First Time Miss). 

5. EVALUATION 
In this section we present the results from our evaluation, 
comparing our cache organization with the base cache 
architecture. The standard way to evaluate the impact of several 
parameters is to vary one of the parameters while keeping the 
others fixed, which we follow in following sections.  

5.1 Area 
For some embedded applications size reduction is far more 
important than being faster or less power consuming. As a side-
benefit, in many of these applications, reducing the foot-print of 
processing resources can also lead to reduced power consumption. 
In this subsection we show how our cache design leads to 
substantial reduction in size (in terms of silicon area needed). For 

Name Description % of 

L/S 

Name 

in fig 

bit count Test bit manipulation 11 bc 

qsort Computational 

Chemistry 

52 qs 

dijkstra Shortest path problem 34.8 dj 

blowfish Encription/decription 29 bf 

sha Secure Hash 

Algorithm 

19 sh 

ri Encryption Standard 34 ri 

string 

search 

Search mechanism 25 ss 

adpcm Variation of PCM  7 ad 

CRC Redundency check 3

6 

cr 

FFT Fast Fourier 

Transform 

23 ff 



this purpose we compare the areas consumed by our cache while 
achieving equal or fewer execution cycles as compared to an 8k 
base cache. In other words, we fix the number of cycles to show 
how our design requires a smaller foot-print. The first series in 
figure 2 shows the percentage reduction in area needed by using 
our system instead of the base cache, while requiring no more 
execution cycles than the base case of 8KB unified data cache. 
From Figure 2 we can see that for half of the benchmarks, our 
system offers more than 80% reduction in silicon area. 
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Figure 2: Percentage of area and cycle reduction 
 

In Figure 2 we also compare the number of cycles (total execution 
time) needed when using our cache system with that using unified 
data cache of equal size. By this we mean, if there is 75% 
reduction in area for our cache leading to a total L-1 size for 
scalar, victim and array portions, we allocate the same cache 
capacity for the unified data cache – thus keeping cache sizes 
equal in both designs. For some benchmarks (cr, bf, ri) we can see 
that there is a large increase in execution time for a unified data 
cache with smaller overall cache capacity (as compared to our 
split data caches). For these benchmarks separation of data into 
array and scalar data significantly reduces the number of conflict 
cache miss. For other benchmarks (ss, ff) we can see that our 
cache does not show any reduction in execution time. This is easy 
to see (also check Table 1) since these applications have very 
small number of load/store instructions and thus any optimization 
to cache substructures has very minimal impact on the program 
execution. For these cases our cache structure can be reconfigured 
to gain other benefits including shutting off portions of caches to 
save energy, or utilizing unused portions of caches for purposes 
other than caching. We will explore these options in a later 
section. 

5.2 Performance 
Most modern embedded applications are demanding higher 
performance and added features. In such applications, faster 
execution of programs may be more important than reducing the 
foot-print of the computing system. Such systems may afford 
larger caches, say 8KB or larger L-1 data caches. Here we will 
show how our design reduces the execution times while using 
equal (or smaller) amounts of area for caches. Note that our 
system uses 3 cache structures --(scalar cache, victim cache and 
array cache). This presents more design choices in terms of 
selecting a size for each of these structures. 

Optimal sizes for each of the cache structures are selected in order 
to obtain overall reduction in execution cycles while maintaining 
the same overall silicon area needed (as that of the base case using 

an 8KB unified data cache). Sometimes the optimal selections of 
sizes for the different structures may lead to overall cache areas 
that are somewhat different from our target sizes. For example if 
we use 4KB scalar, 512-byte victim cache and 2KB array cache, 
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Figure 3: Percentage of cycle reduction without increased area 

 

the total size is less than 8KB, but rounded to the nearest power of 
2 (which is 8KB). For most cases the total area needed by our 
cache is smaller than the size of the base cache. In a few cases, we 
needed less than 512 additional bytes when compared to the 8KB 
base cache. Figure 3 shows the percentage improvement in 
execution times of applications assuming (approximately) equal 
numbers of bytes of cache for our designs and those for the base 
case. Those benchmarks that showed significant improvement in 
terms of silicon areas (Figure 3), also show reductions in 
execution cycles (Figure 3). The benchmarks for which our design 
did not show reductions in area, do not show significant 
performance gains with our designs. Once again this should be 
expected since these benchmarks do not involve many memory 
accesses. For two benchmarks sh and ff, although the percentages 
of memory references are small (19 and 23%) large improvements 
are achieved by our cache. For these applications, the separation 
of data types into scalar and stream (or array) is the main source 
of the performance gains. In Figure 3 we are also showing the 
average execution time across all the benchmarks used in our 
experiments. 

5.3 Power consumption 
The most important concern for the designers of any embedded 
system is power consumption. Our overall goal is the reduction of  
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Figure 4: Percentage reduction of power, area and cycle 

energy consumption by capitalizing on both the split cache 
organization and the reconfigurability of our cache structures. 



Moreover the concomitant reductions in execution cycles and 
silicon areas, can further contribute to energy savings. In this 
subsection we will show the overall improvement in energy 
consumption by combining the efforts described in previous 
results. 

The three series in Figure 4 represent percentage reductions in 
power, area and cycles respectively. As we can see, on average we 
show more than 50% reduction in power. Each of the benchmarks 
also provides reduction in cycles (around 1% for bc and ad) and 
significant reduction in area consumption. 

6. UTILIZATION OF ADDITIONAL AREA 
From the results shown in section 5 we can make two 
observations. First our cache design will result in silicon area 
savings, as high as 84% and an average savings of 60% across 
the selected benchmarks (see Figure 3). Second, our designs 
also consume less power than conventional unified data caches. 
We have shown (Figure 4) that we can achieve as high as 63% 
reduction in energy consumption, with an average of 50% 
reduction across all the benchmarks used.  
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 Figure 5: Percentage of cycle reduction with prefetching 

When provided with larger caches, we can either disable unused 
sub-arrays of cache to save energy or use the sub-arrays for 
purposes other than traditional caching, so that execution 
performance can be further improved. We propose our 
reconfigurable cache to enable its dynamic partitions to be 
assigned to processor activities other than conventional caching. 
Techniques such as hardware prefetching, instruction reuse, 
value prediction and branch prediction have been used 
effectively in desktop applications. However, these techniques 
require additional space for implementing look-up tables or 
buffers (viz trace caches, branch prediction buffers) and the 
achievable performance gains increase with the size of these 
tables [26]. Because of additional tables, these techniques are 
often viewed as inappropriate for embedded systems [5]. Since 
we show reductions in cache sizes needed for our designs (while 
not sacrificing performance or increasing power consumptions), 
these savings may be used to implement look-up tables or 
buffers to implement elaborate branch prediction or instruction 
reuse ideas. To provide evidence of the benefits of 
reconfigurable caches, in this paper we study one such 
technique, hardware prefetching. 

Prefetching or exploiting the overlap of processor computations 
with data access has proven to be effective in tolerating large 
memory latencies  [2, 13]. Prefetching can be either hardware 
[13] or software based, [2]. Successful prefetching can reduce 
miss rates, but scheduling the prefetching requests is still a 
challenge Prefetching too far ahead not only wastes the 
embedded system’s valuable power but may also cause cache 

pollution, since the prefetched data may displace data that will 
be used before the prefetched data. This in turn leads to 
additional misses and wasted energy. On the other hand 
prefetching too late will not hide the latency. In our 
reconfigurable cache we can use separate partitions for 
prefetched data and avoid cache pollution. The prefetching 
areas can be implemented in cache arrays with minor hardware 
and software changes.  
Figure 5 shows the percentage improvement in execution times 
and reductions in power consumptions of applications using 
prefetching (along with our scalar, victim and array caches) when 
compared to the base 8KB unified data cache. As can be seen, 
some benchmarks (qs, bf) show more than 60% reductions in 
execution cycles with prefetching. The benchmarks with very few 
load/store instructions did not show significant improvement. For 
two benchmarks, ad and bc, as the percentage of memory 
references are very low (7 and 11 % respectively) prefetching did 
not show further improvements in execution cycles over those 
shown in Figure 4.  However for all of benchmarks there is a 
significant reduction in power consumption. While access to 
memory is hidden with prefetching, additional energy is 
consumed by prefetching. The data in Figure 5 accounts for the 
added energy for prefetching. Thus our data shows that our split 
data cache augmented by prefetching (and victim cache) can 
improve performance and reduce power consumption of 
embedded benchmarks when compared to a unified data cache. 
The average power savings in Figure 5 is 64% and the average 
performance improvement is 23%. 

7. CONCLUSIONS 
In this paper we introduce a novel cache architecture for 
embedded microprocessor platforms. Our proposed cache 
architecture uses reconfigurability coupled with split data 
caches (separate array and scalar data caches) containing a very 
small victim cache to reduce (silicon) area and dynamic power 
consumed by cache memories while retaining performance 
gains. Our cache architecture reduces the cache size by as much 
as 78% (average 45%), execution time by as much as 55% 
(average 13%), and energy consumption by as much as 67% 
(average 52%) when compared with an 8KB direct-mapped L-1 
unified data cache (in addition to 8KB L-1 instruction cache) 
with a 32KB level-2 cache (for both data and instructions). If 
we consider tradeoffs in performance we can achieve as much as 
83% reduction in area consumption (without any increase in 
execution time) and as much as 61% in cycles (without any 
increase in silicon area).  

Our design enables the cache (as we save area) to be divided 
into multiple partitions that can be used for other processor’s 
activities (such as hardware prefetching, instruction reuse, 
branch predictions) or the cache system can also be configured 
to shutdown certain regions. Since our reconfigurable approach 
leverages the subarray partitioning that is already present in 
modern caches, only minor changes to conventional caches are 
required. The reconfiguration only requires a small overhead in 
terms of silicon area, power and execution times. In this paper 
we evaluated how the unused cache subarrays can be used for 
prefetching. We show that such a use will lead to as much as 
67% reduction in execution times when compared with the base 
case (8KB direct-mapped unified data cache with a 32k level-2 
cache). Even accounting for additional power consumed by 



prefetching, our structures show an average power reduction for 
embedded applications of 64% over traditional unified data 
caches. Since our goal is to find the impact of reconfigurability 
on split data cache, we have worked only with data caches. In 
future we will explore a combined instruction and (our split) 
data caches in reconfiguring choices. We will also explore how 
unused cache portions can be used for instruction reuse, value 
prediction and branch predictions.  
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