
"Reconfigurable Split Data Caches: A Novel Scheme for
Embedded Systems"

 Afrin Naz
1
 Krishna Kavi

1
 Juan Oh

1
 Pierfrancesco Foglia

2

 1
Department of Computer Science and Engineering

2
Dept. Ingegneria della Informazione

University of North Texas,
 Denton, TX 76203, USA

 University of Pisa,
Diotisalvi I-56126PIS, Italy

 940-565-2767 050-221-7530
 email: {afrin, kavi, Juan}@cse.unt.edu email: foglia@iet.unipi.it

ABSTRACT

This paper shows that even very small reconfigurable data caches,
when split to serve data streams exhibiting temporal and spatial
localities, can improve performance of embedded applications
without consuming excessive silicon real estate or power. It also
shows that neither higher set-associativities nor large block sizes
are necessary with reconfigurable split cache organizations. We
use benchmark programs from the MiBench suite to show that our
cache organization outperforms an 8k unified data cache in terms
of miss rates, access times, energy consumption and silicon area.
Finally we show how the saved area can be utilized for supporting
techniques for improving performance of embedded systems. Our
design enables the cache to be divided into multiple partitions that
can be used for different processor activities other than
conventional caching. In this paper we have evaluated one of
those options to support “prefetching”.

Categories and Subject Descriptors

C.1.1. [Processor Architectures]: Single Data Stream Architecture
--- cache memories

General Terms

Performance, experimentation, measurement and Design.

Keywords

Embedded systems, Split cache, reconfigurability, locality, cache.

1. INTRODUCTION
In today’s microprocessors, cache has become a vital element in
improving performance over a wide range of applications.
Studies have found that the on-chip cache is responsible for
50% of an embedded processor’s total power dissipation
[3,5,16]. For that reason we feel that it is worthwhile
investigating new reconfigurable cache organizations to address

both performance and the power requirements. The performance
of a given cache architecture is largely determined by the
behavior of the applications. Unfortunately the manufacturer
typically sets the cache architecture as a compromise across
several applications. This leads to conflicts in deciding on total
cache size, line size and associativity. For embedded systems
where everything needs to be cost effective, this “one-size-fits-
all” design philosophy is not adequate. In this paper we apply
reconfigurability to the design of caches that address these
conflicting requirements and explore how to design caches that
achieve high performance for embedded applications while
remaining both energy and area efficient.

The key contributions of this work are the following. First, we
introduce a novel cache architecture for embedded
microprocessor platforms. This proposed cache will detect
program access patterns and fine-tune cache policies to improve
both data localities and the overall cache performance for
embedded applications. Second, our design enables the cache
(as we save area) to be divided into multiple partitions that can
be used for purposes other than conventional caching. In this
paper we evaluate our cache architecture that uses
reconfigurability coupled with split data caches (separate array
and scalar data caches) complemented by a very small victim
cache. Our goal is to reduce (silicon) area, access time, and
dynamic power consumed by cache memories while retaining
performance gains. In our design, we address the problem of
improving cache performance in embedded systems through the
use of separate array and scalar data caches. Then we further
extend our architecture by augmenting the scalar cache with a
victim cache [19]. Victim caches are based on the fact that
reducing cache misses due to line conflicts for data exhibiting
temporal locality is an effective way of improving cache
performance, without increasing the overall cache associativity.
In this paper we also study how our cache organizations can be
reconfigured based on an application’s behavior. By setting a
few bits in a configuration register, the cache can be configured
by software for optimum sizes for each of our three structures
(array cache, scalar cache, victim cache) and use the rest of the
unused area for other processor activities. The cache system can
also be configured to shutdown certain regions in order to
effectively reduce energy consumption. For both cases, the
reconfiguration leads to only a small overhead in terms of time,
power, silicon area and hardware complexity. In this paper, we
provide the details of our configurable cache. When using our
augmented split caches for embedded applications, our results

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
SAC’07, March 11-15, 2007, Seoul, Korea.
Copyright 2007 ACM 1-59593-480-4/07/0003…$5.00.

show excellent reductions in both memory size and memory
access time, translating into reduced power consumption. Our
cache architecture reduces the cache area by as much as 78%,
execution time by as much as 55%, and energy consumption by
as much as 67%, when compared with an 8k byte direct-mapped
unified data cache with a 32k byte level-2 cache. If we consider
tradeoffs in performance improvement, we can achieve as much
as a 83% reduction in area consumption (without any increase
in execution time) and by as much as a 61% decrease in
execution cycles (without any increase in silicon area). These
reductions can be profound when working with small L-1
caches often found in embedded systems.

The space savings resulting from our cache structures may be
used for many architectural features to further improve the
performance of embedded systems. Techniques such as
hardware prefetching, instruction reuse, branch predictions have
been used effectively in desktop applications. However these
techniques require additional hardware for implementing look-
up tables, which lead to increased size and power requirements.
Since reductions in cache sizes are acquired in our designs
(while not sacrificing performance or increasing power
consumptions), the look-up tables for these optimizations could
be implemented in a partition of the reconfigurable cache
instead of using other valuable chip area. In this paper we study
one such technique, prefetching, with reconfigurable caches.
With prefetching our cache architecture reduces execution time
by as much as 67% when compared with an 8kbyte direct-
mapped unified data cache with a 32k byte level-2 cache. Even
with the additional power consumed by the prefetching, our
studies show significant reductions in energy consumption.

The rest of the paper is organized as follows. Section 2 provides
a survey of related work, while section 3 describes the
architectural design of our reconfigurable cache. In section 4,
we describe the benchmarks and experimental set up used in our
evaluation. In section 5 we evaluate our reconfigurable cache
and in section 6 we evaluate our prefetching option. Finally we
present our conclusions in section 7.

2. PREVIOUS WORK
Ranganathan et al [22] proposed a reconfigurable unified data
cache architecture for general purpose processors. They
proposed dividing cache into different partitions that can be
used for different processor activities. Ranganathan et al did not
provide an analysis of silicon area involved in the
reconfigurable cache, but explored different design alternatives,
focusing on one option that of using the saved silicon area for
“instruction reuse”. We provide a detailed analysis of silicon
area involved in our cache organizations. We also perform
detailed analyses of execution cycles and energy consumed
using our cache structures to demonstrate the gains achieved by
our cache. We concentrate on embedded benchmarks for our
evaluation. Albonesi et al [11] proposed “selective cache ways”
to selectively disable portions of unified data cache, trading off
performance with power. In our analyses, in addition to trading
off performance with power, we also explore how unused cache
portions can be used for other purposes (such as prefetch
buffers), providing further options in design trade-offs.

Work by Vahid et al [4] is closely related to our research, as
they evaluate reconfigurable unified data caches for embedded

applications. Unlike the work by this research team, we do not
see associativity as an important reconfigurable design
parameter. This is because, both our array and scalar caches are
designed as direct mapped caches, and we use victim caches to
solve associativity for scalar data. In addition to showing
performance gains and power reductions, we also analyze
silicon area savings obtained from our caches. Instead of
shutting down cache area to save power, we also explore how
the unused portion of cache area can be used for other
architectural features that can improve applications’
performance. To summarize, the most important significance of
our work is our comprehensive analysis of execution cycles and
area reductions achieved by our caches, which is not done by
anyone before. Several studies have been reported on split data
caches [8, 12, 18, 20, 25] but there has been no work reported
on reconfigurable split data caches.

3. ARCHITECTURAL DESIGN
Figure 1 shows our proposed Reconfigurable Split cache
architecture, with array and scalar data caches, victim cache with
scalar data cache and the instruction cache augmented by a small
prefetching buffer. In order to speedup access, current cache
implementations partition caches into multiple sub-arrays [7,10].
For example, the SA-110 embedded microprocessor [7] uses 32-
way associative 16KB L1 instruction and Data caches, each of
which is divided into 16 fully associative sub-arrays. With this

Figure 1. Reconfigurable split cache organization

partitioning in place, our reconfigurable caches can easily be
implemented if there are at least as many sub-arrays as the
maximum number of partitions (because for a reconfigurable
cache different partitions must be implemented in physically
different sub-arrays indexed by different addresses). In order to
implement reconfigurable caches, only a small amount of
additional logic is required. Additional wiring is also necessary
from the cache to the processor for directing data to/from the
various partitions. The most challenging part in designing a
reconfigurable cache is the implementation of a mechanism to
divide the cache into different (variable sized) partitions and
designing an addressing scheme that can address any partition.
Ranganathan et al [22] have already proposed two partitioning
and addressing schemes: “Associativity based partitioning” and
“Overlapped wide-tag partitioning”. In our design we use
“Overlapped wide-tag partitioning” scheme. In this scheme, the
key challenge is to devise a mechanism so that the size of the
array tag can be dynamically changed with the size of partitions
(since the number of bits in a tag and index fields of the address
will vary based on the size of the partition). We restrict the size of

Victim Scalar

CPU

Array

L2 Cache

Memory

each partition to a power of 2 and support a limited number of
possible configurations (usually two or three). A reconfigurable
cache with N partitions must accept N addresses and generate N
hit/miss signals. In order to track the number and sizes of the
partitions and control hit/miss signals, a special hardware register
is needed. This register will be a part of the processor state.

The additional logic will add to silicon area, access time and
power consumed. Ranganathan et al [22] have studied the impact
of reconfigurable cache organizations on cache access times and
showed that for a small number of partitions, reconfigurable
caches increase the cache access time by less than 5%. In a
different study, Vahid et al have shown that a reconfigurable
cache does not consume significantly additional power over
traditional cache structures [4]. In this paper we have used the
CACTI timing model [23] to obtain values for these overheads of
our reconfigurability.

A reconfigurable cache can be used in different ways. The best
configuration for an application can be determined by extensive
simulations (or actual executions). Software profiling tools,
used to identify portions of code that exhibit different cache
behaviors, can also be used. Reconfiguration can also be
implemented dynamically with appropriate hardware profiling
and an automatic cache tuner.

4. EXPERIMENTAL METHODS
In this section we describe the experimental framework and the
benchmarks used for this study. We also define performance
metrics and power models used in our studies.

4.1 Benchmarks
We use benchmark programs from the MiBench suite[17].
MiBench includes benchmarks from several embedded
application

domains. In order to cover a wide range of applications in, in
our study we included benchmarks from (1) Automotive (2)
Office Automation, (3) Networking, (4) Security, and (5)
Telecommunications groups. The descriptions of the
benchmarks used in our studies are listed in Table 1. Since the
performance of our system depends on the percentage of
memory references caused by an application, we also include
the load/store percentage for each benchmark.

4.2 Simulation
Our experimental environment builds on the SimpleScalar
(version 3.0d) simulation tool set [6] modeling an out-of-order
speculative processor with a two-level cache hierarchy. We rely
on default parameters defined by SimpleScalar.

The base cache system, which is the cache with which we
will compare our configurable cache, uses an 8k byte L1
instruction cache, an 8k byte L1 data cache and a 32 k
byte unified L2 cache. Our performance evaluation
includes silicon area needed for cache structures, because
embedded systems designers are interested not only in
performance but also in better use of silicon area. We use
CACTI[23] for computing silicon areas need by caches.
We use a modified CACTI timing model to obtain
overheads of our reconfigurability. We include energy
consumed due to misses and off-chip accesses. Our

analysis use the following general equations to compute
the dynamic power consumption of a cache.

power = Hit * power_hit + Miss * power_miss

power_miss = OPC + PCW + FTM

 We obtained values for hits and misses for our array and
scalar caches by executing the selected benchmarks on the
Simplescalar simulator. Here it should be mentioned that

Table 1: Descriptions of benchmarks

different cache structures have different power_hit values based
on the cache type, size and hit type of each access. The PCW is
the power consumed to write an entire line to the cache. OPC is
the power needed for off-chip access and calculated as 0.5 * Vdd2

* (0.5 *Wdata + Waddr)) * 20pF [15, 16, 21, 23, 24], where Wdata

and Waddr are the number of bits for both the data sent/returned
and the address sent to the next level of memory on a miss
request. The last term is the load capacitance for off-chip
destinations. At any miss the overhead for searching in cache is
also included as FTM (First Time Miss).

5. EVALUATION
In this section we present the results from our evaluation,
comparing our cache organization with the base cache
architecture. The standard way to evaluate the impact of several
parameters is to vary one of the parameters while keeping the
others fixed, which we follow in following sections.

5.1 Area
For some embedded applications size reduction is far more
important than being faster or less power consuming. As a side-
benefit, in many of these applications, reducing the foot-print of
processing resources can also lead to reduced power consumption.
In this subsection we show how our cache design leads to
substantial reduction in size (in terms of silicon area needed). For

Name Description % of

L/S

Name

in fig

bit count Test bit manipulation 11 bc

qsort Computational

Chemistry

52 qs

dijkstra Shortest path problem 34.8 dj

blowfish Encription/decription 29 bf

sha Secure Hash

Algorithm

19 sh

ri Encryption Standard 34 ri

string

search

Search mechanism 25 ss

adpcm Variation of PCM 7 ad

CRC Redundency check 3

6

cr

FFT Fast Fourier

Transform

23 ff

this purpose we compare the areas consumed by our cache while
achieving equal or fewer execution cycles as compared to an 8k
base cache. In other words, we fix the number of cycles to show
how our design requires a smaller foot-print. The first series in
figure 2 shows the percentage reduction in area needed by using
our system instead of the base cache, while requiring no more
execution cycles than the base case of 8KB unified data cache.
From Figure 2 we can see that for half of the benchmarks, our
system offers more than 80% reduction in silicon area.

0

50

100

150

200

bc qs dj bf sh ri ss ad cr f f avg

p
e
rd

e
n
ta

g
e

area

cycle

Figure 2: Percentage of area and cycle reduction

In Figure 2 we also compare the number of cycles (total execution
time) needed when using our cache system with that using unified
data cache of equal size. By this we mean, if there is 75%
reduction in area for our cache leading to a total L-1 size for
scalar, victim and array portions, we allocate the same cache
capacity for the unified data cache – thus keeping cache sizes
equal in both designs. For some benchmarks (cr, bf, ri) we can see
that there is a large increase in execution time for a unified data
cache with smaller overall cache capacity (as compared to our
split data caches). For these benchmarks separation of data into
array and scalar data significantly reduces the number of conflict
cache miss. For other benchmarks (ss, ff) we can see that our
cache does not show any reduction in execution time. This is easy
to see (also check Table 1) since these applications have very
small number of load/store instructions and thus any optimization
to cache substructures has very minimal impact on the program
execution. For these cases our cache structure can be reconfigured
to gain other benefits including shutting off portions of caches to
save energy, or utilizing unused portions of caches for purposes
other than caching. We will explore these options in a later
section.

5.2 Performance
Most modern embedded applications are demanding higher
performance and added features. In such applications, faster
execution of programs may be more important than reducing the
foot-print of the computing system. Such systems may afford
larger caches, say 8KB or larger L-1 data caches. Here we will
show how our design reduces the execution times while using
equal (or smaller) amounts of area for caches. Note that our
system uses 3 cache structures --(scalar cache, victim cache and
array cache). This presents more design choices in terms of
selecting a size for each of these structures.

Optimal sizes for each of the cache structures are selected in order
to obtain overall reduction in execution cycles while maintaining
the same overall silicon area needed (as that of the base case using

an 8KB unified data cache). Sometimes the optimal selections of
sizes for the different structures may lead to overall cache areas
that are somewhat different from our target sizes. For example if
we use 4KB scalar, 512-byte victim cache and 2KB array cache,

0

10

20

30

40

50

60

70

bc qs dj bf sh ri ss ad cr ff avg

cycles

Figure 3: Percentage of cycle reduction without increased area

the total size is less than 8KB, but rounded to the nearest power of
2 (which is 8KB). For most cases the total area needed by our
cache is smaller than the size of the base cache. In a few cases, we
needed less than 512 additional bytes when compared to the 8KB
base cache. Figure 3 shows the percentage improvement in
execution times of applications assuming (approximately) equal
numbers of bytes of cache for our designs and those for the base
case. Those benchmarks that showed significant improvement in
terms of silicon areas (Figure 3), also show reductions in
execution cycles (Figure 3). The benchmarks for which our design
did not show reductions in area, do not show significant
performance gains with our designs. Once again this should be
expected since these benchmarks do not involve many memory
accesses. For two benchmarks sh and ff, although the percentages
of memory references are small (19 and 23%) large improvements
are achieved by our cache. For these applications, the separation
of data types into scalar and stream (or array) is the main source
of the performance gains. In Figure 3 we are also showing the
average execution time across all the benchmarks used in our
experiments.

5.3 Power consumption
The most important concern for the designers of any embedded
system is power consumption. Our overall goal is the reduction of

0

20

40

60

80

100

bc qs dj bf sh ri ss ad cr f f avg

p
e
rc

e
n

ta
g

e pow er

area

cycle

Figure 4: Percentage reduction of power, area and cycle

energy consumption by capitalizing on both the split cache
organization and the reconfigurability of our cache structures.

Moreover the concomitant reductions in execution cycles and
silicon areas, can further contribute to energy savings. In this
subsection we will show the overall improvement in energy
consumption by combining the efforts described in previous
results.

The three series in Figure 4 represent percentage reductions in
power, area and cycles respectively. As we can see, on average we
show more than 50% reduction in power. Each of the benchmarks
also provides reduction in cycles (around 1% for bc and ad) and
significant reduction in area consumption.

6. UTILIZATION OF ADDITIONAL AREA
From the results shown in section 5 we can make two
observations. First our cache design will result in silicon area
savings, as high as 84% and an average savings of 60% across
the selected benchmarks (see Figure 3). Second, our designs
also consume less power than conventional unified data caches.
We have shown (Figure 4) that we can achieve as high as 63%
reduction in energy consumption, with an average of 50%
reduction across all the benchmarks used.

0

50

100

bc qs dj bf sh ri ss ad cr f f avg

p
e
rc

e
n

ta
g

e

cycle

pow er

 Figure 5: Percentage of cycle reduction with prefetching

When provided with larger caches, we can either disable unused
sub-arrays of cache to save energy or use the sub-arrays for
purposes other than traditional caching, so that execution
performance can be further improved. We propose our
reconfigurable cache to enable its dynamic partitions to be
assigned to processor activities other than conventional caching.
Techniques such as hardware prefetching, instruction reuse,
value prediction and branch prediction have been used
effectively in desktop applications. However, these techniques
require additional space for implementing look-up tables or
buffers (viz trace caches, branch prediction buffers) and the
achievable performance gains increase with the size of these
tables [26]. Because of additional tables, these techniques are
often viewed as inappropriate for embedded systems [5]. Since
we show reductions in cache sizes needed for our designs (while
not sacrificing performance or increasing power consumptions),
these savings may be used to implement look-up tables or
buffers to implement elaborate branch prediction or instruction
reuse ideas. To provide evidence of the benefits of
reconfigurable caches, in this paper we study one such
technique, hardware prefetching.

Prefetching or exploiting the overlap of processor computations
with data access has proven to be effective in tolerating large
memory latencies [2, 13]. Prefetching can be either hardware
[13] or software based, [2]. Successful prefetching can reduce
miss rates, but scheduling the prefetching requests is still a
challenge Prefetching too far ahead not only wastes the
embedded system’s valuable power but may also cause cache

pollution, since the prefetched data may displace data that will
be used before the prefetched data. This in turn leads to
additional misses and wasted energy. On the other hand
prefetching too late will not hide the latency. In our
reconfigurable cache we can use separate partitions for
prefetched data and avoid cache pollution. The prefetching
areas can be implemented in cache arrays with minor hardware
and software changes.
Figure 5 shows the percentage improvement in execution times
and reductions in power consumptions of applications using
prefetching (along with our scalar, victim and array caches) when
compared to the base 8KB unified data cache. As can be seen,
some benchmarks (qs, bf) show more than 60% reductions in
execution cycles with prefetching. The benchmarks with very few
load/store instructions did not show significant improvement. For
two benchmarks, ad and bc, as the percentage of memory
references are very low (7 and 11 % respectively) prefetching did
not show further improvements in execution cycles over those
shown in Figure 4. However for all of benchmarks there is a
significant reduction in power consumption. While access to
memory is hidden with prefetching, additional energy is
consumed by prefetching. The data in Figure 5 accounts for the
added energy for prefetching. Thus our data shows that our split
data cache augmented by prefetching (and victim cache) can
improve performance and reduce power consumption of
embedded benchmarks when compared to a unified data cache.
The average power savings in Figure 5 is 64% and the average
performance improvement is 23%.

7. CONCLUSIONS
In this paper we introduce a novel cache architecture for
embedded microprocessor platforms. Our proposed cache
architecture uses reconfigurability coupled with split data
caches (separate array and scalar data caches) containing a very
small victim cache to reduce (silicon) area and dynamic power
consumed by cache memories while retaining performance
gains. Our cache architecture reduces the cache size by as much
as 78% (average 45%), execution time by as much as 55%
(average 13%), and energy consumption by as much as 67%
(average 52%) when compared with an 8KB direct-mapped L-1
unified data cache (in addition to 8KB L-1 instruction cache)
with a 32KB level-2 cache (for both data and instructions). If
we consider tradeoffs in performance we can achieve as much as
83% reduction in area consumption (without any increase in
execution time) and as much as 61% in cycles (without any
increase in silicon area).

Our design enables the cache (as we save area) to be divided
into multiple partitions that can be used for other processor’s
activities (such as hardware prefetching, instruction reuse,
branch predictions) or the cache system can also be configured
to shutdown certain regions. Since our reconfigurable approach
leverages the subarray partitioning that is already present in
modern caches, only minor changes to conventional caches are
required. The reconfiguration only requires a small overhead in
terms of silicon area, power and execution times. In this paper
we evaluated how the unused cache subarrays can be used for
prefetching. We show that such a use will lead to as much as
67% reduction in execution times when compared with the base
case (8KB direct-mapped unified data cache with a 32k level-2
cache). Even accounting for additional power consumed by

prefetching, our structures show an average power reduction for
embedded applications of 64% over traditional unified data
caches. Since our goal is to find the impact of reconfigurability
on split data cache, we have worked only with data caches. In
future we will explore a combined instruction and (our split)
data caches in reconfiguring choices. We will also explore how
unused cache portions can be used for instruction reuse, value
prediction and branch predictions.

8. REFERENCES
[1] A. Gordon-Ross, F. Vahid and N. Dutt, Automatic tuning of
two-level caches to embedded applications, Design Automation
and Test in Europe Conference (DATE), February 2004, pp.
208-213.

[2] C.K. Luk and T. Mowry, Compiler based prefetching for
recursive data structures, in Proceedings of the 7th International
Conference on Architectural Support for Programming
Languages and Operating Systems, Oct. 1996, pp. 222-233.

[3] C. Zhang, F. Vahid and W. Najjar, Energy benefits of a
configurable line size cache for embedded systems, IEEE
International Symposium on VLSI Design, Tampa, Florida,
February 2003.

[4] C. Zhang, F.Vahid and W.Najjar, A highly configurable
cache architecture for embedded systems, in Proceedings of
30th Annual International Symposium on Computer
Architecture, June. 2003, pp.136 -146.

[5] C. Zhang and F. Vahid, Using a victim buffer in an

application-specific memory hierarchy, Design Automation and
Test in Europe Conference (DATE), February 2004, pp. 220-
225.

[6] D. Burger and T. M. Austin. “The SimpleScalar Tool Set,
Version 2.0”, Tech. Rep. CS-1342, University of Wisconsin-
Madison, June 1997.
[7] E. McLellan. The Alpha AXP architecture and 21064
processor. IEEE Micro, 13(4):36–47, June 1993.

[8] F. J. Sanchez, A. Gonzalez, and M. Valero, “Software
Management of Selective and Dual Data Caches”, IEEE TCCA

NEWSLETTERS, March 97, pp. 3-10.
[9] G. Ammons, T. Ball, and J. Larus. Exploiting hardware
performance counters with flow and context sensitive profiling.
Proceedings of the ACM SIGPLAN Conference on rogramming

Language Design and Implementation, June 1997.

[10] G. Lesartre and D. Hunt. PA-8500: The continuing
evolution of the PA-8000 family. Proceedings of Compcon,
1997.

[11] H. Albonesi, “Selective Cache Ways: On-Demand Cache
Resource Allocation,” Journal of Instruction Level Parallelism,
May 2000.

[12] J. A. Rivers and E. S. Davidson, “Reducing Conflicts in
Direct-Mapped Caches with a Temporality based Design, Proc.

1996 International Conference.

[13] J. L. Baer and T. F. Chen, “An effective on –chip
preloading scheme to reduce data access penalty. ”In
Proceedings of the Supercomputing’91, pp. 176-186, 1991

[14] J. Montanaro et al. A 160-MHz, 32-b, 0.5W CMOS RISC
microprocessor. Digital Technical Journal, 9(1):49–62, 1997.

[15] M.B.Kamble and K.Ghose, Energy-efficiency of VLSI
caches: a comparative study, in Proceedings of Tenth
International Conference on VLSI Design, Jan. 1997, pp.261-
267.

[16]M.B.Kamble and K.Ghosse, Analytical energy dissipation
models for low power caches, in Proceedings of International
Symposium on Low Power Electronics and Design, Aug. 1997,
pp.143 -148.

[17] M. Guthaus, J. Ringenberg, T. Austin, T. Mudge, R.
Brown, "MiBench: A free, commercially representative
embedded benchmark suite, in Proceedings of the IEEE 4th

Annual Workshop on Workload Characterization," Austin, TX,
December 2001.

[18] M. Tomasko, S. Hadjiyiannis, and W. A. Najjar,
“Experimental Evaluation of Array Caches”, IEEE TCCA

Newslatters, March 97, pp. 11-16.

[19]N. P. Jouppi, Improving direct-mapped cache performance
by the Addition of a small fully associative cache and prefetch
buffers, in Proceedings of the 17th ISCA, May 1990, pp. 364-
373.

[20] O. S. Unsal, I. Koren, C. M. Krishna, C. A. Moritz, “The
Minimax Cache: An Energy-Efficient Framework for Media
Processors,” 8th International Symposium on High-

Performance Computer Architecture, HPCA8, Cambridge, MA,
February 2002, pp. 131-140.

[21] P. Jung-Wook, K. Cheong-Ghil, L. Jung-Hoon, K. Shin-
Dug, “An energy efficient cache memory architecture for
embedded systems” Proceedings of the 2004 ACM symposium
on Applied computing, march 2004

[22] P.Ranganathan, S. Adve, and N.P. Jouppi, “Reconfigurable
Caches and their Application to Media Processing,” Int. Symp.
on Computer Architecture, 2000.

[23] S.J.E.Wilton and N.P.Jouppi, "CACTI: an enhanced cache
access and cycle time model," IEEE Journal of Solid-State
Circuits, Volume: 31 Issue: 5 , May 1996, pp.677 -688.

[24]The MOSIS Service, http://www.mosis.org

[25] V. Milutinovic, M. Tomasevic, B. Markovic, and M.
Tremblay, “The Split Temporal/Spatial Cache: Initial
Performance Analysis,” SCIzzL-5, Mar. 1996.

[26] Y. Sazeides and J. E. Smith, “The predictability of Data
values”, In Proceedings of the 30th Annual International
Conference on Microarchitecture, pages 248-258, 1997.

