
Preprint from the Proceedings of the 2000 SoutheastCon, Nashville, TN, April, 2000

A New Implementation Technique for Memory Management

Mehran Rezaei and Krishna M. Kavi1

The University of Alabama in Huntsville

                                                
1 Please direct all correspondence to Krishna M. Kavi, Dept. of Electrical and Computer Engineering, The
University of Alabama in Huntsville, Huntsville, AL 35899; email:    kavi@ece.uah.edu   .
This research is supported in part by NSF grants: CCR 9796310, EIA 9729889, EIA 9820147.

Abstract
Dynamic memory management is an important

and essential part of computer systems design.
Efficient memory allocation, garbage collection and
compaction are becoming increasingly more critical
in parallel, distributed and real-time applications
using object-oriented languages like C++ and Java.  
In this paper we present a technique that uses a Binary
tree for the list of available memory blocks and show
how this method can manage memory more
efficiently and facilitate easy implementation of well
known garbage collection techniques.

Keywords:  Dynamic Memory Management,
Best Fit, First Fit, Buddy System, Memory
Fragmentation, Garbage Collection, Generation
Scavenging.

1. Introduction

The need for more efficient memory
management is currently being driven by the
popularity of object-oriented languages in general
([Chang 99], [Calder 95]), and Java in particular
[Abdullahi 98]. The trend towards the use of Java in
Internet, real-time and embedded systems requires
predictable and/or reasonable execution times for
memory allocation and garbage collection. Our
research originally was motivated by the recent trends
in the design of computer systems and memory units,
leading to Intelligent RAM’s (IRAM) or Processing
In Memory (PIM) devices. We are studying the
migration of memory management, including garbage
collection to the intelligent memory devices. We are
investigating algorithms and techniques that are not
only efficient in execution time, but require less
complex hardware logic to be included in the IRAM
devices. During this research we studied the use of a
Binary Tree for tracking AVAILable (chunks) blocks
of memory. The tree is organized using the starting
address of the memory blocks. In this paper we
describe this approach for memory management and
show how well known memory allocation and
garbage collection techniques can be implemented

more naturally within the context of the Binary Tree
algorithm.

The remainder of the paper is organized as
follow: Section 2 describes memory management
policies, and related work. Section 3 presents our new
implementation (Binary Tree) of Best Fit and First
Fit techniques. Section 4 shows the results and
compares Binary Tree implementation with Linear
Linked list implementation of Best Fit and First Fit,
in terms of execution performance. Section 5
addresses Garbage Collection using Binary Tree
algorithm.

2. Background and Related Research

Dynamic memory allocation is a classic
problem in computer systems. Typically we start
with a large block of memory (sometimes called a
heap). When a user process needs memory, the request
is granted by carving a piece out of the large block of
memory. The user process may free some of the
allocated memory explicitly, or the system will
reclaim the memory when the process terminates. At
any time the large memory block is split into smaller
blocks (or chunks), some of which are allocated to a
process (live memory), some are freed (available for
future allocations), and some are no-longer used by
the process but are not available for allocation
(garbage). A memory management system must keep
track of these three types of memory blocks and
attempt to efficiently satisfy as many of the process’s
requests for memory as possible.

Memory allocation schemes can be classified
into Sequential Fit, Buddy System and Segregated Fit
algorithms. The Sequential Fit approach (including
First Fit, Best Fit) keeps track of available chunks of
memory on a list. Known sequential techniques differ
in how they track the memory blocks and how they
allocate memory requests from the free blocks.
Normally the chunks of memory (or at least the free
chunks) are maintained as a Linear Linked list. When
a process releases memory, these chunks are added to
the free list, either at the end or in place if the list is
sorted by addresses (Address Order [Wilson 95]); freed



chunk may be coalesced with adjoining chunks to
form larger chunks of free memory. When an
allocation request arrives, the free list is searched until
an appropriately sized chunk is found. The memory is
allocated either by granting the entire chunk or by
splitting  the chunk (if the chunk is larger than the
requested size). Best Fit methods [Knuth 73] try to
find the smallest chunk that is at least as large as the
request. First Fit [Knuth 73] methods will find the
first chunk that is at least as large as the request. Best
Fit method may involve delays in allocation while
First Fit method may lead to more external
fragmentation [Johnstone 98].

If the free list is in Address Order [Wilson95],
newly freed chunks may be combined with its
surrounding blocks, leading to larger chunks.
However, this requires a “linear” search through the
free list when inserting a newly freed block of
memory (or when searching for a suitable chunk of
memory).  

In Buddy System ([Knowlton 65], [Knuth 73]),
the size of any memory chunk (live, free or garbage)
is 2k for some k. Two chunks of the same size that
are next to each other in terms of their memory
addresses are known as buddies. If a newly freed chunk
finds its buddy among the free chunks, the two
buddies can be combined into a larger chunk of size
2k+1. During allocation, larger chunks are split into
equal sized buddies, until a chunk that is at least as
large as the request is created. Large internal
fragmentation is the main disadvantage of this
technique. It has been shown that as much as 25% of
memory is wasted due to fragmentation in buddy
systems [Johnstone 98]. An alternate
implementation, Double Buddy ([Johnstone 98],
[Wise78]), which create buddies of equal size, but
does not require the sizes to be 2k, is shown to reduce
the fragmentation by half.

The Segregated list approach maintains
multiple linked lists, one for each different sized
chunk of available lists. Returning a free chunk from
one of the lists satisfies allocation requests (by
selecting a list containing chunks, which are at least
as large as the request). Freeing memory, likewise,
will simply add the chunk to the appropriate list. No
coalescing or splitting is performed and the size of
chunks remains unaltered. The main advantage of
segregated lists is the execution efficiency in
allocating and freeing memory chunks. The
disadvantage is the inefficient usage of memory. The
memory is divided into regions based on the different
sized blocks. Since the number and frequency of
requests for different sized chunks depends on the
application, improper division of memory into
regions can lead to poor memory utilization, and

even inability to satisfy all requests from the
application. Some recent methods fine-tune the
segregated list methods using execution profiles of
programs [Chang 99].

3. Binary Trees For AVAILable Lists

3.1. Overview Of The Algorithm
In our approach to memory management, we

maintain the free chunks of memory (i.e., AVAILable
chunks) on a Binary Tree, using the starting address
of the chunk. In addition to maintaining the size of
the chunk, each node in the Binary Tree also keeps
track of the size of the largest chunk of memory
available in its left and right sub-trees. This
information can be used during allocation to
minimize the search time. This information can also
be used for an efficient implementation of the Best
Fit techniques (more precisely, Better Fits). By
creating a separate tree for different sized chunks, our
approach can be adapted to segregated lists techniques.
However, in this paper we will assume sequential list
approaches only.

While inserting a newly freed chunk of
memory, our algorithm checks to see if the new
chunk of memory can be combined (or coalesced)
with existing nodes in the tree to create larger chunks.
Inserting a new free chunk will require searching the
Binary Tree with a complexity of O(l) where l is the
number of levels in the Binary Tree, and log2(n) ≤ l ≤
n, where n is the number of nodes in the Binary Tree.
It is possible that the Binary Tree de-generates into a
linear list (ordered by the address of the chunk) leading
to a linear O(n) insertion complexity. We advocate
periodic balancing of the tree to minimize the
insertion complexity. As a heuristic we can assume
that log2(n) ≤ l ≤ 2* log2(n).  The re-balancing can be
aided by maintaining the total number of nodes in the
left and right sub-trees with each node. These values
can be used to identify the root for the balanced tree.
Note, however, the coalescing of chunks described
above already helps in keeping the tree from being
unbalanced. In other words, the number of times a
tree must be balanced, although depends on a specific
application, will be relatively small in our approach.
We will not rebalance trees in this paper.

3 .2 .  Algor i thm for  Insert ion  Of  A Newly
Freed Memory Chunks

The following algorithm shows how a newly
freed chunk can be added to the Binary tree of
AVAILable chunks. The data structure for each node
representing a free chunk of memory contains the
starting address of the chunk, the size of the chunk, a



pointers to its left and right child nodes, the size of
the largest chunk of memory in its left and right sub-

trees

.
Structure       used       as       tree’s       nodes:
Struct node {

Int Start; // Starting Address Of the Chunk
Int Size; // Size of the Chunk
Int Max_Left; // Size of largest chunk in the left sub-trees

 Int Max_Right; // Size of largest chunk in the right sub-trees
Struct node  *Left_Child; // Pointer to Left  Subtree
Struct node  *Right_Child; // pointer to Right Subtree
Struct node  *Parent; // pointer to Parent – Need to adjust Max_Left and Max_Righ

};
Algorithms       and        Functions:
Void INSERT(int Chunk_Start, int Chunk_Size, node *Root) {

// Chunk_Start and Chunk_Size are associated with the newly freed block of memory
// Check if the new chunk can be coalesced with the Root node
If ((Root→Start + Root→Size == Chunk_Start) || (Chunk_Start + Chunk_Size == Root→Start))

COALESCE (Chunk_Start, Chunk_Size, Root);
Else {
If (Chunk_Start < Root->Start)

If (Root→Left_Child == NULL) // Create a new left child
Root→Left_Child = CREATE_NEW(Chunk_Start,Chunk_Size);

Else   
INSERT (Chunk_Start, Chunk_Size, Root→Left_Child);

Else {
If (Root→Right_Child == NULL) // Create a new Right Child

Root→Right_Child = CREATE_NEW(Chunk_Start, Chunk_Size);
Else

INSERT(Chunk_Start, Chunk_Size, Root→Right_Child);
}

}
ADJUST_SIZES (Root);

       }
Void ADJUST_SIZES ( node *Root) {

// This function traverses up the tree from the current node, adjusting the sizes of the largest
// chunks on the left and right sub-trees

}
Void COALESCE (int Chunk_Start, int Chunk_Size, node  *Root) {

If (Root->Start + Root ->Size = Chunk_Start){
Root→Size = Root→Size + Chunk_Size;
Check-If-Right-Child-Can-Be-Coalesced; // Case I.1
Check-If-Leftmost-Child-Of-Right-Child-Can-Be-Coalesced; // Case I.2

}
Else If (Chunk_Start + Chunk_Size = Root→Start) {

Root->Start = Chunk_Start;
Root->Size = Root->Size + Chunk_Size;
Check-If-Left-Child-Can-Be-Coalesced; // Case II.1
Check-If-Rightmost-Child-Of-Left-Child-Can-Be-Coalesced; // Case II.2

}
}



3.3.  Complexity Analysis

Algorithm INSERT is very similar to Binary
tree traversal and the execution time complexity
depends on the number of levels l in the tree. In a
balanced tree,  l  ≤ log2(n) where n is the number of
nodes in the tree. The function COALESCE, as can
be seen, checks at most 4 other nodes that are
candidates for further coalescing. Note that only one
of the 4 cases will lead to a coalescing. Case I.2 and
Case II.2 may require a    traversal       down    the tree – from
the current node to the leaves. This computation has a
O(l) execution time complexity. The additional step
involved in inserting a newly freed chunk is in
adjusting the sizes of the largest chunks in the left
and right sub-trees as indicated by the function
ADJUST_SIZES. This requires a    traversal       up    the tree
to the root of the tree. Once again the complexity is
O(l). Thus, the overall complexity of the INSERT
algorithm is O(l).

Allocation requests are satisfied using
traditional Binary search algorithms with a
complexity of O(l). In our case, the search is speeded-
up by the Max_Left and Max_Right that guide the
search to the appropriate sub-tree.

3.4. Restructuring The Tree.
When a node in the AVAILable tree is deleted

either due to an allocation or due to coalescing, the
tree must be adjusted. This process requires changes
to at most two pointers. When a node is deleted we
consider the following cases.

a. If the deleted node has a right child, the
right child will replace the deleted node. The
left child of the deleted node (if one exists)
becomes the left child of the new node.
Otherwise, if the replacing node (the right
child of the deleted node) has a left sub-tree,
we traverse the left sub-tree and the leftmost

child of the replacing node becomes the
parent of the left child of the deleted node.

b. If the deleted node has no right child then
the left child replaces the deleted node.

Since the Case “a” above may involve    traversing
down    the tree (from the right child of the deleted
node), the worst case complexity is O(l).

4. Empirical Results

In order to evaluate the benefits of our
approach to memory management, we developed
simulators that accept requests for memory allocation
and de-allocation. We studied 3 different
implementations for tracking memory chunks: Binary
tree based on starting addresses (our method), linear
Linked lists (more traditional method), Binary buddy
system. For each we studied two memory allocation
policies: Best-Fit and First-Fit. In all
implementations, we included coalescing of freed
objects whenever possible. We do not show the
results for Buddy system since its performance is very
poor in terms of fragmentation.

4.1. The Selected Test Benchmarks
For our tests, we used Java Spec98

benchmarks [Javaspec 98], since Java programs are
allocation intensive. Applications with large amount
of live data are worthy benchmarks for memory
management techniques, because such benchmarks
stress the memory overhead incurred by the
management algorithms. The programs were
instrumented using ATOM [Eustance 94] on Digital
Unix, to collect traces indicating memory allocation
and de-allocation requests. The general statistics of the
benchmarks used are shown in Table 1.   

Table  1:  Benchmark Stat is t ics

Total # Total # Total Bytes Average Size Average Size
Benchmark Allocation Deallocaton of Memory Of Request  Of Live

Requests Requests Requested Bytes Memory/Bytes

Simple 12,110 8,069 4,555,549 376 699,443

Check 46,666 41,009 4,472,192 96 860,498

Jess 81,858 74,309 7,615,801 93 1,350,750

Jack 80,815 73,863 7,173,707 89 1,173,134

MPEG 97,431 91,104 7,546,025 77 1,292,207

Average 63,776 57,671 6,272,655 146 1,075,206



The first benchmark (Simple) is not a Java
Spec98 program but a collection of simple programs
(including Fibonacci) written by UAH students.
Check is a collection of programs that exercise the
error checking capabilities of JVM on a machine. Jess
is an expert system shell based on NASA’s CLIPS
system. Jack is a Java parser generator, and MPEG is
an MPEG Layer-3 audio program. We ran into
difficulties in running other Java Spec98 programs
(including the Javac and db) due to an older JVM
translator on DEC Unix available to us.

4.2. Execution Performance
In this subsection we compare the execution

performance of our algorithm with Linear Linked list
techniques using both First Fit and Best Fit
approaches. For this comparison we collected
statistical data on the following items:

Average          Number         of         free-chunks.    This will
measure the memory overhead of a memory
management algorithm. The memory needed for
each node in our Binary Tree method must
include: a starting address of the chunk, 3 pointers
(left, right and parent) and 3 sizes (size of the
chunk, maximum sized chunks in the left and
right sub-trees) for a total of 28 bytes. In
traditional Linked list methods, we need a starting
address, 2 pointers (next and previous) and one

size (size of the node) for a total of 16 bytes. The
average number of nodes also measures the
execution time needed for searching the Binary
Tree (and Linear Linked list).
Maximum        Number       of       free-chunks   . This measures
worst case memory overhead and execution times
for searching the tree (as well as the Linear Linked
list).
Average       number       of       nodes       searched       for       allocation
and       free   . These measure the execution complexity
while searching the tree for allocation and for
inserting a freed node.
Maximum       number       of       nodes       searched       for       allocation
and       free   . These measure the worst case execution
time for allocation and de-allocation.
Frequency        of         Coalescing.    This measures how
often a newly freed chunk of memory can be
combined with other free nodes. As pointed out in
[Johnstone 98] “less fragmentation results if a
policy (and an implementation) immediately
coalesces freed memory". Moreover, coalescing
also helps in reducing the number of nodes in the
AVAILable list.

The first set of data in Table-2 compares the
Binary Tree based implementation of AVAILable
lists with that using Linear Linked lists.

Table 2: Exact Allocation

Allocated Size – Requested size = 0

Binary Tree Implementaton Linked List Implementation

Bench- Avg. Coale- Nodes Searched Nodes Searched Average Coale- Nodes Searched

Mark Policy No. scence At Allocation At De-Allocation No. scense At Allocation

Name Nodes Frq. Avg. Max Avg Max Nodes Frq. Avg. Max

Simple BF 59.42 0.86 6.89 35 9.67 34 436.55 0.33 368.6 1005

FF 119.4 0.95 1 1 74.46 210 309.36 0.85 1 1

Check BF 127.48 0.88 28.23 84 41.72 195 1689.18 0.29 1392.41 3175

FF 557.35 0.97 1 1 417.18 840 2635.72 0.87 1 1

Jess BF 218.02 0.85 71.2 155 87.82 252 2892.26 0.17 2365.24 4916

FF 1106.97 0.97 1 1 831.23 1874 4852.51 0.86 1 1

Jack BF 171.27 0.89 39.43 95 49.53 169 3236.11 0.3 2611.11 4938

FF 796.5 0.98 1 1 622.72 1455 4249.59 0.87 1 1

MPEG BF 154.7 0.92 30.27 88 46.02 490 3060.86 0.5 2475.3 4896

FF 691.85 0.98 1 1 520.77 1155 3746.86 0.91 1 1

Avg BF 146.18 0.88 35.20 91.40 46.95 228.00 2262.99 0.32 1842.53 3786.00

FF 654.414 0.97 1.00 1.00 493.27 1106.80 3158.81 0.87 1.00 1.00



In this run, we allocated exactly the number of
bytes requested. This policy can lead to many very
small chunks of memory, cluttering the AVAILable
lists and causing longer search delays. We show the
data for both First Fit and Best Fit allocation
policies. This table shows that the Binary Tree
implementation consistently outperforms Linear
Linked list implementation in every aspect: average
number nodes in AVAILable list, Maximum number
of nodes, Frequency of a freed-node being coalesced,
Average (and Maximum) number of nodes searched
to satisfy an allocation request. It is also interesting
to observe that Best Fit (or Better Fit) can be more
efficiently implemented using the Binary Tree,
although the allocation performance is adversely
impacted (same is true for Linear Linked list
implementation also). The number of nodes and the
frequency of coalescence for Linear Linked lists using
First Fit policy compare very poorly with the Binary
Tree implementation. The Best Fit policy using
Linear Linked list require 15.5 times as many nodes
as the Binary Tree approach (averaged across all
benchmarks)-- 2263 nodes vs. 146 in Binary Tree.
The high frequency of coalescence is primarily due to
the birth and death behavior of Java objects: “objects
allocated together tend to die together". The table
also shows that the Binary Tree implementation has

fewer nodes (on AVAILable list) leading to smaller
memory overhead for the tree. Since each node in
Binary Tree requires 28 bytes per node, the average
bytes used are 28*146 =4088 (for Best Fit) as
compared to 16*2263 =36208 in Linear Linked list.

On average the Binary Tree searches 35 nodes
(in Best-Fit policy) to find a suitable node and 47
nodes during de-allocation; while the Linear Linked
list searches 1843 nodes on allocation. This is a
significant performance enhancement. The differences
are even more pronounced for First Fit policies. In
the rest of the paper, we will compare only Best Fit
policies, since our goal is to show that the Binary
Tree method can implement Best Fit policy very
efficiently. Binary Tree implementation outperforms
Address Ordered  and Linked Lists even better for
First Fit policy.

In the next set of experiments, we avoided
keeping very small chunks of memory, by allocating
more than the requested number of bytes. In Table 3,
we will not keep chunks that are smaller than 16
bytes and in Table 4 we do not keep chunks smaller
than 32 bytes. The data shows a significant
improvement in performance (for both Binary Tree
and Linear Linked list implementations), although
the improvements are more dramatic with Binary
Tree implementations.   

Table 3. Overallocation-16

Allocated size – Requested Size <= 16

Binary Tree Implementaton Address-Ordered List Implementation

Bench- Avg. Avg. Coale- Nodes Searched Nodes Searched Avg. Avg. Coale- Nodes Searched

Mark No. Intern scence At Allocation At De-allocation No. Intern scense At Allocation

Name Nodes Frag- Frq Avg. Max Avg. Max Nodes Frag- Frq Avg. Max

ment ment

Simple 45.01 0.54 0.79 3.45 28 5.5 27 89.08 1.1 0.39 67.19 397

Check 29.13 0.97 0.79 4.36 22 7.44 132 231.29 1.97 0.33 167.89 661

Jess 39.72 1.34 0.72 5.08 36 8.04 135 170.04 2.10 0.35 140.41 634

Jack 46.22 0.95 0.80 5.03 38 8.91 129 267.90 1.96 0.33 236.68 998

MPEG 60.00 0.83 0.83 5.27 28 9.95 453 315.16 1.85 0.40 240.49 986

Avg. 44.02 0.93 0.79 4.64 30.4 7.97 175 214.69 1.80 0.36 170.53 735.2

.

Table 4. Overallocation – 32



Allocated Size – Requested Size <= 32

Binary Tree Implementaton Linear List Implementation

Bench- Avg. Avg. Coale- Nodes Searched  Nodes Searched Avg. Avg Coale- Nodes Searched

Mark No. Intern scence    At Allocation At De-allocation No. Intern scense At Allocation

Name Nodes Frag- Frq Avg. Max Avg Max Nodes Frag- Frq. Avg. Max

ment ment

Simple 37.09 2.20 0.75 2.89 30 6.08 44 74.6 3.87 0.44 60.42 336

Check 24.94 2.92 0.78 3.62 25 7.01 128 117.35 5.72 0.43 77.71 494

Jess 26.60 3.70 0.70 3.92 29 7.47 128 78.50 6.83 0.33 75.42 478

Jack 53.26 2.99 0.79 4.87 42 10.92 128 158.37 6.10 0.44 133.50 905

MPEG 45.81 2.38 0.82 4.10 31 9.00 451 213.46 5.30 0.50 144.34 864

Avg 37.54 2.84 0.77 3.88 31.40 8.10 175.80 128.46 5.56 0.43 98.28 615.40

In Table 3, the average number of nodes
searched at allocation (and de-allocation) is
substantially smaller, while the actual amount of
fragmentation due to “over-allocation” is very small:
less than one byte. In the Binary Tree
implementation, the average number of nodes
searched at allocation, over all programs is only 4.64
(as compared to 35.20 in Table 2), and the number of
nodes searched on de-allocation drops to 8 (from 47).
Linear Linked  list method also shows improvements
in searching: dropping to 171 from 1843. The
coalescence frequency dropped slightly for all
programs and implementations. The memory
overhead in Binary Tree averages to 1232 bytes as
compared to 3435 bytes in Linear Linked list
implementation

From Table 4 it can be seen that the
improvement over Table 3 is very modest, while the
fragmentation due to “over-allocations” increases. We
believe that since Java requests are often very small
(average number of bytes for our test data is about
100 bytes as shown in Table 1), we feel that it is not
very beneficial to “over-allocate” large chunks.

5. Garbage Collection Using Binary
AVAILable Tree

In this section we will outline how the Binary
Tree can be used for Generation Scavenging
techniques for Garbage Collection [Unger 84, 92]. In
such techniques, the heap is divided into two spaces:
to-space and from-space. Initially, all allocations will
be in one of the spaces (say from-space). When the
space is exhausted, the system will start allocation
from the other space (i.e., to-space). The system will

transfer only the live objects in from-space over to-
space. At the completion of this copying, the roles of
the two spaces are reversed. In our Binary Tree
implementation of AVAILable tree, we can simulate
the to-space and from-space by selecting either the left
sub-tree or right sub-tree for allocation. Traversing
left sub-tree allocates from low addresses while
traversing right sub-tree allocates from high addresses.
Allocating from one end of the memory (either low or
high addresses) also achieves better locality for
allocated data. In this paper we have not implemented
garbage collection suggested here, but we are in the
process of exploring various collection and
compaction policies within the context of our Binary
Tree implementation.

6. Summary And Conclusions

In this paper we described the use of Binary
Trees for maintaining the available chunks of
memory. The Binary Tree is based on the starting
address of memory chunks. In addition, we keep
track of the sizes of largest blocks of memory in the
left and right sub-trees. This information is used
during allocation to find a suitable chunk of memory.
Our data shows that Best Fit (or Better Fit)
allocation policies can easily be implemented using
the chunk sizes in the left and right sub-trees. The
Binary Tree implementation permits immediate
coalescing of newly freed memory with other free
chunks of memory. Binary Tree naturally improves
the search for appropriate size blocks of memory over
Linear Linked lists.



We have empirically compared the Binary Tree
method with traditional Linked lists for
implementing AVAILable lists, using Java Spec98
benchmarks. The data shows that the Binary Tree
approach consistently outperforms the Linked list
method. The data also shows that since, the average
number of nodes in the tree is substantially smaller
than those in the linked list, the memory overhead in
maintaining the AVAILable list is actually smaller
for Binary Tree, although each node maintains more
information.

We plan to extend these experiments in a
variety of ways: use non-Java applications with larger
allocation requests; implement garbage collection
methods based on Generation Scavenging; develop a
hardware implementation of our memory allocation
method for the purpose of embedding it in a IRAM
device.

7. References

[Abdullahi 98] S.E. Abdullahi and G.A. Ringwood.
“Garbage collecting the Internet: A survey of
distributed garbage collection”, ACM
Computing Surveys, Sept. 1998, pp 330-
373.

[Calder 95] B. Calder, D. Grunwald and B.
Zorn. “Quantifying behavioral differences
between C and C++ programs”, Tech Rept.
CU-CS-698-95, Dept of CS, University of
Colorado, Boulder, CO, Jan 1995.

[Chang 99] J. M. Chang, W. Lee and Y. Hasan.
“Measuring dynamic memory invocations in
object-oriented programs”, Proc. of 18th

IEEE International Performance Conference
on Computers and Communications
(IPCCC-1999), Feb. 1999

[Eustance 94] A. Eustance and A. Srivastava.
“ATOM: A flexible interface for building
high performance program analysis tools”
DEC Western Research Laboratory, TN-44,
1994.

[Javaspec 98] Java Spec98 Benchmarks and
documentation can be obtained from
http://www.spec.org/osg/jvm98/.

[Johnstone 98] M.S. Johnstone and P.R. Wilson.
“The memory fragmentation problem:
Solved?”  Proc. Of the  International
Symposium on Memory Management,
Vancouver, British Columbia, Canada,
October 1998, pp 26-36.

[Knuth 73] D.E. Knuth. The Art Of Computer
Programming, Volume 1: Fundamental
Algorithms, Addison-Wesley, 1973.

[Knowlton 65] K.C. Knowlton. “A fast storage
allocator”, Communications of the ACM,
Oct. 1965, pp 623-625.

[Unger 84] D.M.Unger. “Generation scavenging:
A non-disruptive high performance storage
reclamation algorithm”, Proc. Of ACM
SIGPLAN Software Engineering
Symposium on Practical Software
Development Environments, April 1984, pp
157-167.

[Unger 92] D.M. Unger and F. Jackson. “An
adaptive tenuring policy for generating
scanvengers”, ACM Transaction On
Programming Languages and Systems, Jan.
1992, pp. 1-27.

[Wise 78] D.S. Wise. “The double buddy-system”.
Technical Report 79, Computer Science
Department, Indiana University,
Bloomington, IN, Dec. 1979.

[Wilson 95] P.R. Wilson, et. Al. “Dynamic
storage allocation: A survey and critical
review” Proc. Of 1995 International
Workshop on Memory Management,
Kinross, Scotland, Springer-Verlag LNCS
986, pp1-116.


