
Hardware Support for Fast and Bounded-Time Storage Allocation �

Extended Abstract

Steven M. Donahue, Matthew P. Hampton, Ron K. Cytron, Mark Franklin
Washington University Box 1045
Department of Computer Science

St. Louis, MO 63130 USA

Krishna Kavi
University of North Texas

March 22, 2002

Abstract

With the advent of operating systems and programming
languages that can evaluate and guarantee real-time spec-
ifications, applications with real-time requirements can
be authored in higher-level languages. For example, a
version of Java suitable for real-time (RTSJ) has recently
reached the status of a reference implementation, and it is
likely that other implementations will follow.

Analysis to show the feasibility of a given set of tasks
must take into account their worst-case execution time, in-
cluding any storage allocation or deallocation associated
with those tasks. In this paper, we present a hardware-
based solution to the problem of storage allocation and
(explicit) deallocation for real-time applications, Our ap-
proach offers both predictable and low execution time:
a storage-allocation request can be satisfied in the time
necessary to fetch one word from memory.

We have implemented our approach in the context of
IRAMs (intelligent storage) using FPGAs and our ap-
proach is based on Knuth’s buddy algorithm. We present
the design, implementation, and experimental results of
our approach.

1 Introduction

Most modern programming languages offer some mecha-
nism for for dynamic storage management [7, 6]. Figure 1
illustrates the “life” of a typical object. At some point,
the application allocates storage for an object from an
area called the heap. The program has access to the
object for some period of time, during which we say
the object is live. At some point, the object becomes

�Sponsored by NSF under grant ITR–0081214; contact author
cytron@cs.wustl.edu

Live Dead

alloc dealloc

Figure 1: The life of an object.

inaccessible or dead. Subsequently, the storage associated
with the object is deallocated—returned to the heap to
help satisfy future storage requests. The action that
triggers deallocation varies by language: some languages
offer automatic garbage collection [6] while others require
explicit action to be taken by the application.

For allocation, languages such as Java and C offer
primitives such as new andmalloc that cause a specified
or implied number of bytes to be taken from the heap
and allocated for the program’s use. Although dynamic-
storage usage will vary by application, there are impor-
tant applications that use dynamic storage intensively.
Performance of such applications, particularly in a real-
time environment, can be significantly influenced by their
storage-allocation facility.

Recently, standards for real-time programming lan-
guages have emerged that bring modern, high-level
languages within reach of real-time applications. An
example of this trend is the Real-Time Specification
for Java (RTSJ) [1], which provides for bounded-time
dynamic-storage allocation. Because Java mandates
initialization of dynamically allocated storage, a block of
n bytes cannot be allocated in less than 
(n) time. For C
and C++ where such intialization is unnecessary, dynamic
storage could be allocated in constant time. Factoring out
initialization, the common challenge for an allocator is
finding a suitable block in constant time.

Allocators based on an unorganized free-list (illustrated

1



Figure 2: An unorganized free-list: the block that can
satisfy a storage request may be at the end.

Figure 3: A customized allocator manages a set of
identically sized blocks. The unshaded blocks are
in use by the program and the shaded blocks are
threaded in a linked list (not shown).

in Figure 2) cannot deliver on the lower bound, because
the block that satisfies a given allocation request could lie
at the very end of the list. In such a case, the time to satisfy
a request for n bytes is O(N), where N is the size of the
storage heap rather than 
(n). Because such performance
is unacceptable for real-time systems, an allocator based
on unorganized free-lists is unsuitable.

Allocators with organized free-lists segregate available
blocks by their size, typically using one of the following
approaches.

General allocator: One example of a general ap-
proach [7] is Knuth’s buddy system [5], illustrated
in Figure 10, and discussed in Section 3. For a heap
of size N , there are log2N lists of identically sized
blocks, where list i contains free blocks of size 2i.
Thus, a suitable block can be found in O(logN)
time. Such performance is considered reasonably
bounded, although technically such allocation takes
greater than constant time. Other variations on a
general, segregated-by-size allocator are also suit-
able [7].

A disadvantage of this approach is that the average
performance of the buddy allocator is typically worse

Figure 4: Contrived worst-case application for an
unstructured list allocator. The worst-case time can
become arbitrarily bad, but the average performance
beats the buddy system.

than the free-list allocator [4]. Figure 4 shows results
for a contrived example that allocates and deallocates
storage such that the block to satisfy a request is
at the end of the unstructured allocator’s free-list.
However, even for this contrived example, average
performance of the free-list allocator is stronger than
for the buddy system.

The large gap between worst- and average-case
performance means that real-time applications must
grossly overprovision for the execution time of the
free-list allocator. The buddy system offers a much
better ratio of worst- to average-case performance,
but with an overall performance loss on average.

Application-specific allocator: A very efficient and
bounded-time allocator can be written specifically
for a given application as follows. Suppose it is
known that the application allocates blocks of size
s1; s2; : : : ; sd with at most l1; l2; : : : ; ld occurrences
of those blocks concurrently live. The application is
given d distinct allocators, one for each block size;
allocator i is given si � li storage to satisfy requests
for that block size. Figure 3 illustrates the status of
one such allocator in the middle of an application’s
execution. All blocks are identically sized, and the
unshaded blocks are considered to be live at this
point. The available blocks (shaded) are simply
linked together in a list. A block is allocated from the
head of that list in constant time; similarly, a block
is deallocated by placing at the head of the list in
constant time.

The application must be rewritten to use invoke the
block-specific allocator at the appropriate points in

2



the program.1

A disadvantage of this approach is that the ap-
plication and allocator are highly specialized and
excessively coupled, which can make development,
testing, and maintenance of the application more
costly. Also, the total storage required for such
applications is

X

i=1

dsd � ld �M

where M is an application’s maxlive statistic—the
maximum number of bytes that are concurrently
live during the application’s execution.2 When the
above summation significantly exceeds M , then the
amount of heap overprovisioning becomes costly for
embedded applications.

In summary, the ideal storage allocator has the following
characteristics:

� It can be used without modification on any applica-
tion.

� It finds a suitable block in constant time.

� It does not require unreasonable overprovisioning of
the heap.

� The gap between its worst-case and average-case
performance is as small as possible.

� Its overall speed is as fast as possible.

In this paper, we present hardware support for storage
allocation to achieve the above properties. This hardware
imposes a very small incremental cost to the storage
subsystem, yet it can find a block of storage in the time
it takes to read a single storage location. The rest of
this paper is organized as follows. Section 2 introduces
some Java and C benchmarks for this paper and presents
measurements concerning the dynamic storage-allocation
behavior of those applications. Space limitations prohibit
a detailed explanation of the buddy system [5], but the
essence of the approach is presented in Section 3. Sec-
tion 3.1 presents a simple VHDL implementation of the
buddy system—essentially a straightfoward translation
of the software algorithm into hardware. Section 3.3
presents two optimizations that signicantly improve the
time needed to find a suitable block for an allocation
request. Section 4 presents experiments that quantify the
effects of our work and Section 5 presents conclusions and
ideas for future work in this area.

1If the block-size at a given allocation site is unknown prior to
runtime, then the requisite allocator can be looked up in O(d) worst-
case time. For most applications, d � N , and so can be considered
constant.

2In other words, a heap of less than M bytes would cause the
application to fail regardless of the allocation approach.

Figure 5: Speedup of the software buddy system
over the unstructured list allocator, size 100 SPEC

benchmarks.

2 Benchmarks and their Storage-
Allocation Times

In this section we characterize the Java and C bench-
marks used in our study. After presenting some simple
statistics about the benchmarks, we examine the overhead
of Java’s and C’s standard allocator, which uses an
unstructured free-list as illustrated in Figure 2.

In Figure 8 we see the SPEC [3] benchmarks, and
note that two of them (mpegaudio and compress) are
computational in nature and thus do not allocate many
objects.

The C benchmarks are shown in Figure 9. These ap-
plications were part of a suite of malloc benchmarks [10].
Two of the C benchmarks generate a significant number
of mallocs, while the others are more computational.

2.1 Time spent in the storage allocator

Figure 6 shows the fraction of time spent in storage
allocation for the large runs of the SPEC benchmarks
shown in Figure 8. The data in Figure 6 was obtained
by running applications in Sun’s JDK 1.1.8 interpreter.
The overall execution times were captured as well as
the times spent in the storage allocator (exclusive of any
garbage collection necessary to satisfy a request). In those
runs, up to 8.5% of the execution time was spent on
storage allocation. Figure 5 illustrates the performance
of a software implementation of the buddy system, as
implemented by us in Sun’s JDK 1.1.8. The resulting
performance is close to the unstructured-list allocator.
Even in its software implementation, the buddy system
offers reasonable bounds on allocation time, yet it does
not dramatically improve allocation time overall nor does
it always outperform the unstructured list allocator.

Allocation costs for the C benchmarks described in
Figure 9 are shown in Figure 7. In these benchmarks,

3



Figure 6: Percent of runtime spent in the storage
allocator (unstructured list) for the SPEC benchmarks.
Note these were the large (size 100) runs of these
benchmarks. The size-1 runs (used in the latter part
of this paper) generally spent less time in allocation.

Figure 7: Percent of runtime spent in the storage
allocator (malloc) for the C benchmarks.

up to 2.5% of the applications’ execution times was
consumed by the storage allocator.

3 Design and Implementation

In this section, we present two designs for a hardware-
based buddy-system allocator. The first design, the Refer-
ence Buddy System (RBS) is a straightforward translation
of the software algorithm into hardware. The second
design, the Optimized Buddy System (OBS), leverages
hardware characteristics to perform optimizations that
significantly improve the worst-case time bound for stor-
age allocation. In Section 4 we assess the performance
of our hardware system compared with the standard
software (list-based) allocator as well as with a software
implementation of the buddy system.

Buddy System Allocation

We begin with a quick summary of Knuth’s buddy sys-
tem [5]. Each storage request is resolved to a block of
size 2k for some positive, integral value of k. Figure 10(a)
shows the buddy system’s structure in its initial state,
assuming the heap is 256 bytes.

The buddy system operates as follows:

1. When the program requests memory, the allocator
first calculates the smallest power of 2 that is larger
than or equal to the size requested. More specifically,
a request of size s is translated into a request of size
2k; k = dlog2 se.

2. The free-list at index k is consulted for an available
block.

3. If a block of size 2k is not available, then two
such blocks can be obtained through bisection of a
block of size 2k+1. Figure 10(b) shows the result of
subdividing the initial heap into two sub-blocks.

4. Applying this strategy recursively, increasingly
larger blocks can be subdivided until a block of size
2k can be obtained.

For example, the heap in Figure 10(c) has blocks available
of size 16. Thus, a request for a block of size 10 can be
satisfied immediately, with the resulting block returned in
the time it takes to unlink a block from the size-16 free-
list.

Further, consider a request for a block of size 8.
Because the list of blocks of size 8 is empty, the buddy
system hunts upwards for a larger block that can be
subdivided to obtain the desired size. The time necessary
for that search is O(logM) where M is the size of the
storage heap. For embedded and real-time systems, we
assume that the heap size is fixed and that O(logM) time
is considered efficient.

Buddy System Deallocation

When blocks are deallocated, a common problem for most
storage-management algorithms is the coalescing of free
blocks that happen to lie consecutively into larger blocks.
The buddy system greatly simplifies this task. When a
block of size 2k+1 is bisected into two blocks of size 2k,
the resulting blocks are said to be buddies of each other.
A buddy of size 2k can compute its buddy’s address by
flipping a predetermined bit of its own address—typically
bit k where bit 0 is the rightmost bit.3

Figure 10(c) shows the result of requesting a block of
size 16 given the initial condition shown in Figure 10(a).
The initial block is recursively subdivided until two

3Without loss of generality, we assume the heap’s origin is address 0.

4



Name Description Lines Objects Execution
of Source Created Time (sec)

compress Modified Lempel-Ziv 6,396 10129 7463
jess Expert System 570 7,923,782 1802
raytrace Ray Tracer 3750 6,346,487 2101
db Database Manager 1020 3,210,520 3766
javac Java Compiler 9485 5,902,305 1969
mpegaudio MPEG-3 decompressor N/A 7,555 8519
mtrt Ray Tracer, threaded 3750 6,586,584 2223
jack PCCTS tool N/A 6,579,042 2336

Figure 8: SPEC benchmark properties.

Name Description Lines Number of Execution
of Source Mallocs Time (sec)

cfrac Continued Fraction Algorithm 3,644 1,528 2.05
gawk GNU’s AWK interpreter 10,737 723,498 120.72
gs Aladdin Ghostscript 25,388 108,541 17.71
p2c Pascal to C Converter 35,581 5,479 1.01
ptc Pascal to C Converter 9,974 2,885 0.35

Figure 9: C benchmark statistics.

(a) (b) (c)

Figure 10: A block (a) can be divided into two sub-blocks (b) and this proceeds recursively to satisfy an
allocation request. In the end (c), two blocks of 16 bytes are obtained; one remains free and other is
returned to satisfy the request.

5



blocks of size 16 are obtained. One of those blocks is
returned to satisfy the allocation request, and the other
block remains on the free-list for blocks of size 16.

When storage is returned, the buddy system eagerly
joins buddies to create ever larger blocks. Thus, if the
block allocated in Figure 10(c) is immediately deallo-
cated, buddies are joined together repeatedly until the
heap is returned to the state shown in Figure 10(a).

3.1 Hardware Design of Buddy Algorithm

Our hardware design of Knuth’s buddy algorithm supports
alloc and dealloc as described above for software as well
as an init operation.

The init operation initializes the heap to a given size.
As with the software implementation, the heap is segre-
gated by size into lists for the relevant powers of two.
The free blocks are maintained in a doubly-linked list to
facilitate coalescing (described below), which can remove
blocks from the middle of a list. In addition to the list
pointers, each free block contains the size of itself and
a free/busy bit to indicate whether the block is currently
allocated.

We store this header information at the front of each
block in the heap. Because blocks are powers of two,
we can reduce the header to three (32-bit) words—the
busy/free bit can be the least-significant bit (LSB) of the
size field. When a block is unallocated, we require 3
words of header space. Thus, the minimum size that can
be allocated by our design is 16 bytes (16 is the smallest
power of two larger than 12). Allocated blocks need only
remember their size, so the overhead there is a single word
of storage. Thus, when a program requests a block of
size s bytes, a block of size s + 4 is required. Because
all blocks are powers of two, a block of size 2k; k =
dlog2 s+ 4e is requisitioned to satisfy the request.

The alloc operation allocates a block of size 2k by
searching on the list at k or above. The time to find the
smallest block equal to or larger than the requisite size is
called the Find Time. If found on a larger list, the block
must be repeatedly subdivided until the requisite size is
obtained (as in Figure 10). For example, suppose block
B of size y was found, and y > 2k. First B would be
removed from its free list. Second, B’s buddy at size
y=2 is calculated, and inserted into the list at level y=2.
The buddy calculation and list insertion is executed until
2k = y. The time to break down the block from y to 2k is
called the Block Time.

The dealloc operation eagerly coalesces a returned
block with its buddies on subsequently larger levels until
it encounters a buddy that is not free. That is, suppose
block R of size 2k is returned. First R’s buddy at size
2k is inspected. If it is not free, then R is inserted in the
list for free blocks of size 2k; if it is free, the buddy is

removed from its free list, joined with R, and this process
continues until a unfree buddy is found.

3.2 Design of RBS

The RBS was designed to be a simple hardware imple-
mentation of Knuth’s buddy algorithm. The system is a
computational resource whose complete environment in-
cludes an off-chip memory as well as a memory controller.
The design of the core RBS logic is shown in Figure 11,
ignoring the shaded box.

We require the following hardware components to
implement the computational functions required by the
buddy algorithm.

� Two shift registers keep track of the block sizes, thus
eliminating a potentially expensive multiplication
unit from the system.

� Size registers allow the base-2 multiplication and di-
vision necessary for the alloc and dealloc operations.

� One register file provides general-purpose storage
for the algorithm. A second register file contains the
head pointers of each free-list in the heap.

� Two registers store addresses and data that are sent
to/from the off-chip memory.

� A simple, specialized ALU provides operations
to calculate buddies (XOR) and pointer offsets
(plus/minus).

� A controller handles the execution of the algorithm.

Most of the complexity of the RBS is located in the con-
troller, which is comprised of three logical components.
Each component maps to one of the three operations
described in Section 3.1. The controller was implemented
using a 135-state Finite State Machine. We implemented a
separate memory system controller to handle the low-level
details of the memory interface and reduce the complexity
of the RBS controller.

3.3 Improved design

The nature of a hardware computation makes it possible
to add two optimizations to the RBS. We call the resulting
system the Optimized Buddy System (OBS), whose block
diagram is shown in Figure 11, including the shaded box.

The first of these optimizations, Fast Find, is a module
that reduces the time taken to find an allocatable block.
The second optimization, Fast Return, leverages a prop-
erty of the buddy algorithm to return an answer for an
alloc operation before the alloc operation has completed.

6



Memory Data

����
����
����
����
����
����
����
����
����

����
����
����
����
����
����
����
����
����

CPU Data

CPU Control

32−Bit
General 
Purpose 
Registers

32−Bit
List Head
Pointers

Node Registers
Buddy List

Fast
Find
Module

Control Lines

Data Lines

ALU

Controller

Memory Control

Memory Data

Memory Address

2 Shift Registers

Memory Address

Figure 11: General architecture of our hardware
allocator. The shaded box represents optimizations
described in Section 3.3.

3.3.1 Fast Find Module

The Fast-Find module uses hardware to search the head
pointers of the free list in parallel for a block that satisfies
a memory request. Since blocks must be powers of two,
all blocks are aligned on an even-byte boundary. Thus,
any available block will have an address whose Least
Significant Bit (LSB) is 0. We organized our free-list
structure such that a head pointer for a list which is empty
has an LSB of 1. The OBS then can use a parallel search,
as described below, to find a suitable list whose LSB is 0.

The Fast-Find module first masks out the head pointer
LSBs of any lists whose corresponding block sizes are
smaller than the requested size. In parallel, it passes the
remainder of the LSBs through a leading-zero detector.
The first zero that is found by the detector will be the
LSB of the pointer to the block we want to allocate. The
leading-zero detector in the OBS implementation uses
Sklansky’s parallel prefix algorithm [9]. In contrast, the
RBS uses a linear search on the LSBs with a worst-case
complexity ofO(logN)whereN is the heap size in bytes.
The OBS reduces this to constant time with a parallel
search of complexityO(log logN), which is effectively
bounded in practice by a small constant.

3.3.2 Fast Return

One property of Knuth’s buddy algorithm that we can take
advantage of is that on an allocation request, the address
of the block that will be returned is known early in the
allocation operation. The remainder of the time is spent
breaking down blocks to update the state of the buddy
structure. An obvious optimization would be to have
the allocator return the block as soon as the Fast-Find
module locates it, and restore the buddy structure as the

requesting program continues to execute. The success of
this approach depends on the assumption that allocations
do not occur at an interval smaller than the amount of time
required for the allocator to recover. We address this issue
further in the next section.

3.4 Optimized Synthesis

The OBS was synthesized to a Xilinx Virtex IIe
XCV1000E FPGA to determine its resource consumption.
Overall, the core buddy system, excluding the off-chip
memory and memory controller, consumed 3,988 Look-
Up Tables (LUT) out of the provided 24,576 (16%). The
equivalent gate count for the design was 40,348. These
numbers show that the buddy system consumes very little
hardware real-estate.

4 Experiments

In this section we present the results of experiments to
evaluate the performance of our hardware-based buddy
system implementations.

4.1 Speedup of RBS compared to Software

We begin by comparing the performance of the RBS
allocator with our software buddy implementation. As
shown in Figure 12, the RBS provided significant savings
in malloc time compared to the software allocator.
As expected, this savings does not translate into overall
performance gains for these benchmarks, because the
contribution of themalloc calls to the overall execution
time is so small (see Figure 7). GS is the onlyC
benchmark for which the effect on overall execution time
is significant. The corresponding data for the JavaSPEC

benchmarks shown in Figure 13 are similar to the results
seen for theC benchmarks.

4.2 Evaluation of OBS compared to RBS

In Section 3.3, we presented two optimizations for im-
proving the performance of our allocator. We evaluate the
implementation of the OBS in this section.

First, we evaluate theaverage-case performance, which
is of interest to non-real-time applications. The compar-
isons between the RBS and OBS showing the average-
case performance for the JavaSPECbenchmarks is shown
in Figure 14. The complexity added by the Fast-Find
Module, as explained in Section 3.3.1, does affect the
average-case performance, which suffers by about 4–6
clock cycles for each benchmark.

Second, we evaluate theworst-case allocation time,
which is important for real-time applications. We also

7



Name Number of Sum of Malloc Sum of Alloc RBS Time Savings % of Savings % of
Mallocs Times in C(ns) Times in RBS(ns) Savings(ns) Exec Time Malloc Time

Cfrac 1,528 3,435,085 2,691,726 743,358 0.036 21.64
Gawk 500,000 1,402,012,204 530,971,970 871,040,233 N/A 62.13
GS 108,541 457,844,619 102,653,089 355,191,529 2.06 77.58
P2C 5,479 11,209,591 6,409,678 4,799,912 0.48 42.82
PTC 2,885 5,635,971 5,078,744 557,226 0.17 9.89

Figure 12:C malloc times in software and VHDL.

Name Number of Sum of Malloc Sum of Alloc RBS Time Savings % of Savings % of
Mallocs Times in SW(ns) Times in RBS(ns) Savings(ns) Exec Time Malloc Time

Compress 5,124 10,346,341 7,197,345 3,148,995 0.0005 30.44
Jess 45,868 90,520,454 53,334,023 37,186,430 0.4038 41.08
Raytrace 276,961 525,332,397 293,451,559 231,880,837 0.4994 44.14
DB 7,609 15,908,353 9,935,946 5,972,406 0.2252 37.54
Javac 26,114 51,651,837 30,952,678 20,669,158 0.3024 40.07
MpegAudio 7,551 15,781,356 9,671,071 6,110,284 0.0091 38.72
MTRT 276,085 542,677,803 297,405,369 245,272,433 0.5282 45.20
Jack 393,745 743,994,511 449,201,238 294,793,272 0.2537 39.62

Figure 13:Java Alloc Times in Software and VHDL

Name RBS OBS
Compress 8.91 12.0
Jess 6.47 12.0
Raytrace 5.66 12.0
DB 7.92 12.0
Javac 7.0 12.0
MpegAudio 7.69 12.0
MTRT 5.65 12.0
Jack 6.43 12.0

Figure 14: Average-case performance of hardware
Find in clock cycles.

examine the ratio of worst-case to average-case perfor-
mance, to study the extent to which real-time applications
mustoverprovision the cost of running the allocator.

As shown in Figure 15, the optimized version finds an
allocatable block effectively in�(1) time. Thus, the OBS
drastically improves the bound for worst-caseFind times.
In contrast, the complexity of RBS Find isO(logN)
whereN is the size of the heap. Comparing the OBS
to a software-based allocator, we see that the worst-case
bounds are even more distinct. Figure 16 shows that the
software implementation is approximately 5 times slower
than the OBS.

The OBS also does very well in terms of tight provi-
sioning for real-time systems. A real-time system must
provision for worst-case behavior. When worst- and

Name RBS OBS
Compress 125 13.0
Jess 125 13.0
Raytrace 125 13.0
DB 125 13.0
Javac 125 13.0
MpegAudio 125 13.0
MTRT 125 13.0
Jack 125 13.0

Figure 15: Worst-case performance for hardware
Find in clock cycles.

average-case performance is similar, such provisioning is
efficient. Figure 17 shows the ratio of average- to worst-
case for OBS and RBSFind times.4 Clearly, real-time
systems should favor OBS because it leads to markedly
less overprovisioning.

Finally, we analyze the effect of fast-return on actual
benchmarks. Recall from Section 3.3.2, that fast-return
overlapsBlock Time with the application. If two allocation
requests come too soon in succession, then OBS may not
be ready to satisfy the second request, because aBlock
operation is still in progress.

Figure 18 examines the interarrival times of the
malloc requests. For eachC benchmark, the minimum

4TheBlock times are identical.

8



Name Ratio Software/OBS
Cfrac 4.60
Gawk 9.79
GS 5.25
P2C 5.49
PTC 5.24

Figure 16:Worst-case C malloc times.

Name RBS OBS
Compress 0.0713 0.9231
Jess 0.0518 0.9231
Raytrace 0.0453 0.9231
DB 0.0634 0.9231
Javac 0.0536 0.9231
MpegAudio 0.0615 0.9231
MTRT 0.0452 0.9231
Jack 0.0515 0.9231

Figure 17: Ratio of average-case to worst-case for
hardware Find.

alloc interarrival time is greater than the worst-caseBlock
Time. Thus, eachBlock operation completes before
anotheralloc request arrives.

Figure 19 shows that the performance savings due to
fast return could be greater than 96–98% compared to the
C software allocator. The effect on overall application
performance varies from %0.16 to %2.54.

Figure 20 shows the interarrival allocation times for our
Java benchmarks. Unlike theC benchmarks, allocation
requests do come closely spaced—so much so in some
cases that the later allocation must wait for the earlier
one’sBlock operation to finish. However, in examining
how often this occurs, we found that less than 15% of
the requests were delayed for thejess benchmark. We
are completing a study of theSPECbenchmarks and their
actual waiting times for our allocator. Even if delayed,
performance is still far stronger with the hardware-based
allocator than with software.

Name Interarrival OBS
Time(ns) Block Time(ns)

Cfrac 26,963 20,565
Gawk 26,455 19,583
GS 26,550 12,708
P2C 26,774 14,672
PTC 26,550 14,672

Figure 18: Interarrival times vs. Block times of C
benchmarks.

Name % Savings on % Savings on
Malloc Application

Cfrac 96.56 0.16
Gawk 97.24 1.65
GS 98.17 2.54
P2C 96.22 1.06
PTC 96.04 1.58

Figure 19:Fast-Return Effect On Performance.

Name Interarrival OBS
Time(ns) Block Time(ns)

Compress 13,036 16,619
Jess 7,566 16,619
Raytrace 8,756 16,619
DB 12,619 16,619
Javac 9,536 16,619
MpegAudio 7,571 16,619
MTRT 9,976 16,619
Jack 10,512 16,619

Figure 20:Interarrival times vs. Block times of Java
benchmarks.

5 Conclusions

The ideal storage allocator would be fast, general-
purpose, have constantFind time, and as small a gap
between average- and worst-case as possible. We have
implemented and evaluated a hardware storage-allocation
system based on Knuth’s buddy algorithm and have
contributed two optimizations that are due to hardware
implementation. As shown in Section 4, we nearly
achieved the goals of an ideal allocator. In terms ofFind,
our system is as fast as a storage read.

Future work will stress improving the worst-case bound
onBlock time. We are currently exploring several ideas as
follows:

� Conceptually, theBlock operation could be paral-
lelized: each buddy level can try to obtain its portion
of a subdivided block concurrently.

� We currently store an object’s header information
with the object in the heap space, which resides in
(relatively slow) RAM. We would like to evaluate
the performance effects of moving the header to a
smaller, faster memory, to improve the efficiency of
storage operations within the allocator.

� We would like to evaluate the architectural and
performance issues of supporting garbage-collection
operations (mark/sweep, reference counting [8], and
other algorithms [2]) in the memory system.

9



Acknowledgements

We thank Morgan Deters and Dante Cannarozzi for help
with obtaining trace data for this paper. We thank Ben
Zorn for publishing the C storage-allocating benchmarks.

References

[1] Bollella, Gosling, Brosgol, Dibble, Furr, Hardin,
and Turnbull.The Real-Time Specification for Java.
Addison-Wesley, 2000.

[2] Dante J. Cannarozzi, Michael P. Plezbert, and
Ron K. Cytron. Contaminated garbage collection.
Programming Language Design and Implementa-
tion, 2000.

[3] SPEC Corporation. Java SPEC benchmarks. Techni-
cal report, SPEC, 1999. Available by purchase from
SPEC.

[4] Steven M. Donahue, Matthew P. Hampton, Morgan
Deters, Jonathan M. Nye, Ron K. Cytron, and
Krishna M. Kavi. Storage allocation for real-time,
embedded systems. In Thomas A. Henzinger and
Christoph M. Kirsch, editors,Embedded Software:
Proceedings of the First International Workshop,
pages 131–147. Springer Verlag, 2001.

[5] Donald E. Knuth.Fundamental Algorithms, Volume
1, The Art of Computer Programming, Second Edi-
tion. Addison-Wesley, 1973.

[6] Paul R. Wilson. Uniprocessor garbage collection
techniques (Long Version). Submitted to ACM
Computing Surveys, 1994.

[7] Paul R. Wilson, Mark S. Johnstone, Michael Neely,
and David Boles. Dynamic storage allocation: A
survey and critical review. In Henry Baker, editor,
Proceedings of International Workshop on Memory
Management, volume 986 ofLecture Notes in Com-
puter Science, Kinross, Scotland, September 1995.
Springer-Verlag.

[8] David S. Wise, Brian Heck, Caleb Hess, Willie
Hunt, and Eric Ost. Research demonstration of
a hardware reference-counting heap.Lisp Symb.
Comput., (2):159–181, July 1997.

[9] Reto Zimmermann. VHDL library of arithmetic
units. Technical report, Integrated Systems Labo-
ratory, ETH Zürich, 1998.

[10] Benjamin Zorn and Dirk Grunwald. Empirical
measurements of six allocation-intensive c pro-
grams. SIGPLAN Notices, 27(12):71–80, 1992.

Available byftp://ftp.cs.colorado.edu/
pub/misc/malloc-benchmarks.

10


